QUALIFYING EXAMINATION

AUGUST 2005 MATH 523 - A. PETROSYAN AND P. STEFANOV

Each problem is worth 20 points.

1. (a) Find a solution of the Cauchy problem

$$
y u_{x}+x u_{y}=x y, \quad u=1 \quad \text { on } \quad S:=\left\{x^{2}+y^{2}=1\right\} .
$$

(b) Is the solution unique in a neighborhood of the point $(1,0)$? Justify your answer.
2. Consider the second order PDE in $\{x>0, y>0\} \subset \mathbb{R}^{2}$

$$
x^{2} u_{x x}-y^{2} u_{y y}=0
$$

(a) Classify the equation and reduce it to the canonical form.
(b) Show that the general solution of the equation is given by the formula

$$
u(x, y)=F(x y)+\sqrt{x y} G(x / y) .
$$

3. Let Φ be the fundamental solution of the Laplace equation in \mathbb{R}^{n} and $f \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$. Then the convolution

$$
u(x):=(\Phi * f)(x)=\int_{\mathbb{R}^{n}} \Phi(x-y) f(y) d y
$$

is a solution of the Poisson equation $-\Delta u=f$ in \mathbb{R}^{n}. Show that if f is radial (i.e. $f(y)=f(|y|))$ and supported in $B_{R}:=\{|x|<R\}$, then

$$
u(x)=c \Phi(x), \quad \text { for any } \quad x \in \mathbb{R}^{n} \backslash B_{R},
$$

where $c=\int_{\mathbb{R}^{n}} f(y) d y$.
Hint: Use spherical (polar) coordinates and the mean value property.
4. Consider the so-called 2-dimensional wave equation with dissipation

$$
\left\{\begin{array}{l}
u_{t t}-\Delta u+\alpha u_{t}=0 \quad \text { in } \quad \mathbb{R}^{2} \times(0, \infty), \\
u(x, 0)=g(x), \quad u_{t}(x, 0)=h(x), \quad x \in \mathbb{R}^{2},
\end{array}\right.
$$

where $g, h \in C_{0}^{\infty}\left(\mathbb{R}^{2}\right)$ and $\alpha \geq 0$ is a constant.
(a) Show that for an appropriate choice of constants λ and μ the function

$$
v\left(x_{1}, x_{2}, x_{3}, t\right):=\exp \left(\lambda t+\mu x_{3}\right) u\left(x_{1}, x_{2}, t\right)
$$

solves the 3 -dimensional wave equation $v_{t t}-\Delta v=0$.
(b) Use (a) to prove the following domain of dependence result: for any point $\left(x_{0}, t_{0}\right) \in \mathbb{R}^{2} \times(0, \infty)$ the value $u\left(x_{0}, t_{0}\right)$ is uniquely determined by the values of g and h in $\overline{B_{t_{0}}\left(x_{0}\right)}:=\left\{x \in \mathbb{R}^{2}:\left|x-x_{0}\right| \leq t_{0}\right\}$. (You may use the corresponding result for the wave equation without proof.)
5. Let $u(x, t)$ be a bounded solution of the heat equation $u_{t}=u_{x x}$ in $\mathbb{R} \times(0, \infty)$ with the initial condition

$$
u(x, 0)=u_{0}(x) \quad \text { for } \quad x \in \mathbb{R}
$$

where $u_{0} \in C^{\infty}(\mathbb{R})$ is 2π-periodic, i.e. $u_{0}(x+2 \pi)=u_{0}(x)$. Show that

$$
\lim _{t \rightarrow \infty} u(x, t)=a_{0}
$$

uniformly in $x \in \mathbb{R}$, where

$$
a_{0}:=\frac{1}{2 \pi} \int_{0}^{2 \pi} u_{0}(x) d x
$$

