QUALIFYING EXAMINATION JANUARY 2004 MATH 523 - Prof. Phillips

1. Consider the Cauchy problem

$$u_x - 2xu_y = u ext{ for } (x, y) \in \mathbb{R}^2$$

 $u(x, x^2) = 2x ext{ for } x \in \mathbb{R}$

- a) Quote a theorem to show that there is a unique solution in a neighborhood of every point on $y = x^2$ except (0,0). Indicate why the theorem does not apply to (0,0).
- b) Find the solution in a neighborhood of (1, 1).

2. Let Ω be a bounded domain in \mathbb{R}^n with a smooth boundary. Let $u \in C^2(\overline{\Omega})$ be such that $u \neq 0$ and solves

$$-\Delta u = \lambda u \qquad \text{in } \Omega,$$
$$u = 0 \qquad \text{on } \partial \Omega,$$

for some constant λ . Use Green's First Identity to establish the following.

a) Prove that $\lambda > 0$.

Let $v \in C^2(\overline{\Omega}), v \not\equiv 0$, and solves

$$-\Delta v = \mu v \qquad \text{in } \Omega,$$
$$v = 0 \qquad \text{on } \partial \Omega$$

where $\mu \neq \lambda$.

b) Show that $\int_{\Omega} uv dx = 0.$

3. Consider the Cauchy problem

$$au_{xx} + bu_{xy} + cu_{yy} + d = 0$$
 on $\Omega \subset \mathbb{R}^2$,

$$u(0,y) = f(y), ext{ on } \{0\} imes \mathbb{R} \cap \Omega,$$
 $u_x(0,y) = g(y),$

where a, b, c, d are functions of x, y, u, u_x, u_y and Ω is an open set. Carefully state the conditions on a, b, c, d, f, and g so that the Cauchy-Kovelevsky Theorem can be applied in a neighborhood of (0, 0). State the result as well. 4. Let $\Omega \subset \mathbb{R}^2$ be an open connected bounded set with a smooth boundary. Suppose Ω has the symmetry:

 $(x,y)\in\Omega$ if and only if $(-x,y)\in\Omega$.

Let $u(x,y) \in C^2$ be harmonic in Ω . Set v(x,y) = u(-x,y) for $(x,y) \in \Omega$.

a) Show that v is harmonic in Ω .

Let $u \in C^2(\overline{\Omega})$ satisfying

$$\begin{aligned} \Delta u &= 0 \qquad \text{in } \Omega, \\ u &= g \qquad \text{on } \partial \Omega, \end{aligned}$$

where g(x,y) = g(-x,y) for $(x,y) \in \partial \Omega$.

b) Prove that u(x,y) = u(-x,y) for $(x,y) \in \Omega$ and show that

$$u_x(0,y) = 0$$
 if $(0,y) \in \Omega$.

- 5. Let h(x,t) be a bounded C^1 function.
 - a) For each τ fixed give the formula for $v(x, t; \tau)$ solving

$v_{tt} - v_{xx} = 0$	for $x \in \mathbb{R}$,	$t > \tau$,
v(x, au; au)=0,	for $x \in \mathbb{R}$,	
$v_t(x, \tau; \tau) = h(x, \tau)$	for $x \in \mathbb{R}$.	

b) Use Duhamel's principle to solve

$u_{tt} - u_{xx} = h(x, t)$	for $x \in \mathbb{R}$,	t > 0
u(x,0)=0	for $x \in \mathbb{R}$,	
$u_t(x,0) = 0$	for $x \in \mathbb{R}$	

in terms of v. Verify, by direct substitution, that the formula solves the Cauchy problem.

c) For given (x_0, t_0) what is the domain of dependence of u on h?

6. Let g be a continuous function with compact support in \mathbb{R}^n . Write a formula for the bounded solution to

$$u_t - \Delta u = 0$$
 for $x \in \mathbb{R}^n$, $t > 0$,
 $u(x, 0) = g(x)$ for $x \in \mathbb{R}^n$.

Prove that

 $\lim_{t\to\infty} u(x,t) = 0 \quad \text{where the convergence is uniform in } x.$