QUALIFYING EXAMINATION
 JANUARY 2004
 MATH 523 - Prof. Phillips

1. Consider the Cauchy problem

$$
\begin{aligned}
u_{x}-2 x u_{y} & =u \text { for }(x, y) \in \mathbb{R}^{2} \\
u\left(x, x^{2}\right) & =2 x \text { for } x \in \mathbb{R}
\end{aligned}
$$

a) Quote a theorem to show that there is a unique solution in a neighborhood of every point on $y=x^{2}$ except $(0,0)$. Indicate why the theorem does not apply to $(0,0)$.
b) Find the solution in a neighborhood of $(1,1)$.
2. Let Ω be a bounded domain in \mathbb{R}^{n} with a smooth boundary. Let $u \in C^{2}(\bar{\Omega})$ be such that $u \not \equiv 0$ and solves

$$
\begin{array}{rlr}
-\Delta u & =\lambda u & \\
\text { in } \Omega \\
u & =0 & \\
\text { on } \partial \Omega
\end{array}
$$

for some constant λ. Use Green's First Identity to establish the following.
a) Prove that $\lambda>0$.

Let $v \in C^{2}(\bar{\Omega}), v \not \equiv 0$, and solves

$$
\begin{aligned}
-\Delta v & =\mu v & & \text { in } \Omega \\
v & =0 & & \text { on } \partial \Omega
\end{aligned}
$$

where $\mu \neq \lambda$.
b) Show that $\int_{\Omega} u v d x=0$.
3. Consider the Cauchy problem

$$
\begin{gathered}
a u_{x x}+b u_{x y}+c u_{y y}+d=0 \text { on } \Omega \subset \mathbb{R}^{2}, \\
\begin{array}{c}
u(0, y)=f(y), \text { on }\{0\} \times \mathbb{R} \cap \Omega \\
u_{x}(0, y)=g(y),
\end{array}
\end{gathered}
$$

where a, b, c, d are functions of x, y, u, u_{x}, u_{y} and Ω is an open set. Carefully state the conditions on a, b, c, d, f, and g so that the Cauchy-Kovelevsky Theorem can be applied in a neighborhood of $(0,0)$. State the result as well.
4. Let $\Omega \subset \mathbb{R}^{2}$ be an open connected bounded set with a smooth boundary. Suppose Ω has the symmetry:

$$
(x, y) \in \Omega \quad \text { if and only if } \quad(-x, y) \in \Omega
$$

Let $u(x, y) \in C^{2}$ be harmonic in Ω. Set $v(x, y)=u(-x, y)$ for $(x, y) \in \Omega$.
a) Show that v is harmonic in Ω.

Let $u \in C^{2}(\bar{\Omega})$ satisfying

$$
\begin{aligned}
\Delta u=0 & \text { in } \Omega \\
u=g & \text { on } \partial \Omega
\end{aligned}
$$

where $g(x, y)=g(-x, y)$ for $(x, y) \in \partial \Omega$.
b) Prove that $u(x, y)=u(-x, y)$ for $(x, y) \in \Omega$ and show that

$$
u_{x}(0, y)=0 \quad \text { if }(0, y) \in \Omega .
$$

5. Let $h(x, t)$ be a bounded C^{1} function.
a) For each τ fixed give the formula for $v(x, t ; \tau)$ solving

$$
\begin{aligned}
v_{t t}-v_{x x} & =0 & & \text { for } x \in \mathbb{R}, \quad t>\tau, \\
v(x, \tau ; \tau) & =0, & & \text { for } x \in \mathbb{R}, \\
v_{t}(x, \tau ; \tau) & =h(x, \tau) & & \text { for } x \in \mathbb{R} .
\end{aligned}
$$

b) Use Duhamel's principle to solve

$$
\begin{aligned}
u_{t t}-u_{x x} & =h(x, t) & & \text { for } x \in \mathbb{R}, \quad t>0 \\
u(x, 0) & =0 & & \text { for } x \in \mathbb{R}, \\
u_{t}(x, 0) & =0 & & \text { for } x \in \mathbb{R}
\end{aligned}
$$

in terms of v. Verify, by direct substitution, that the formula solves the Cauchy problem.
c) For given $\left(x_{0}, t_{0}\right)$ what is the domain of dependence of u on h ?
6. Let g be a continuous function with compact support in \mathbb{R}^{n}. Write a formula for the bounded solution to

$$
\begin{aligned}
u_{t}-\Delta u & =0 & & \text { for } x \in \mathbb{R}^{n}, \quad t>0 \\
u(x, 0) & =g(x) & & \text { for } x \in \mathbb{R}^{n} .
\end{aligned}
$$

Prove that
$\lim _{t \rightarrow \infty} u(x, t)=0 \quad$ where the convergence is uniform in x.

