QUALIFYING EXAMINATION
 AUGUST 2004
 MATH 523 - Prof. Petrosyan

1. Consider the initial value problem

$$
\begin{aligned}
& a(x, y) u_{x}+b(x, y) u_{y}=-u \\
& u=f \text { on } S=\left\{(x, y): x^{2}+y^{2}=1\right\}
\end{aligned}
$$

where a and b satisfy
$a(x, y) x+b(x, y) y>0 \quad$ for any $(x, y) \in \mathbb{R}^{2} \backslash\{(0,0)\}$.
a. Show that the initial value problem has a unique solution in a neighborhood of S. Assume that a, b and f are smooth.
b. Show that the solution of the initial value problem actually exists in $\mathbb{R}^{2} \backslash\{(0,0)\}$.
2. Let $u \in C^{2}(\mathbb{R} \times[0, \infty))$ be a solution of the initial value problem for the one dimensional wave equation

$$
\begin{array}{ll}
u_{t t}-u_{x x}=0 & \text { in } \mathbb{R} \times(0, \infty) \\
u=f, u_{t}=g & \text { on } \mathbb{R} \times\{0\}
\end{array}
$$

where f and g have compact support. Define the kinetic energy by
$K(t)=\frac{1}{2} \int_{-\infty}^{\infty} u_{t}^{2}(x, t) d x$
and the potential energy by
$P(t)=\frac{1}{2} \int_{-\infty}^{\infty} u_{x}^{2}(x, t) d x$.
Show that
a. $K(t)+P(t)$ is constant in t,
b. $K(t)=P(t)$ for all large enough times t.
3. Use Kirchhoff's formula and Duhamel's principle to obtain an integral representation of the solution of the following Cauchy problem

$$
\begin{array}{ll}
u_{t t}-\Delta u=e^{-t} g(x) & \text { for } x \in \mathbb{R}^{3}, t>0 \\
u(x, 0)=u_{t}(x, 0)=0 & \text { for } x \in \mathbb{R}^{3} .
\end{array}
$$

Verify that the integral representation reduces to the obvious solution $u=$ $e^{-t}+t-1$ when $g(x)=1$.
4. Let Ω be a bounded open set in \mathbb{R}^{n} and $g \in C_{0}^{\infty}(\Omega)$. Consider the solutions of the initial boundary value problem

$$
\begin{array}{ll}
\Delta u-u_{t}=0 & \text { for } x \in \Omega, t>0 \\
u(x, 0)=g(x) & \text { for } x \in \Omega \\
u(x, t)=0 & \text { for } x \in \partial \Omega, t \geq 0
\end{array}
$$

and the Cauchy problem
$\Delta v-v_{t}=0 \quad$ for $x \in \mathbb{R}^{n}, t>0$
$v(x, 0)=|g(x)| \quad$ for $x \in \mathbb{R}^{n}$,
where we put $g=0$ outside Ω.
a. Show that
$-v(x, t) \leq u(x, t) \leq v(x, t), \quad$ for any $x \in \Omega, t>0$.
b. Use a to conclude that
$\lim _{t \rightarrow \infty} u(x, t)=0, \quad$ for any $x \in \Omega$.
5. Let $P_{k}(x)$ and $P_{m}(x)$ be homogeneous harmonic polynomials in \mathbb{R}^{n} of degrees k and m respectively; i.e.,
$P_{k}(\lambda x)=\lambda^{k} P_{k}(x), \quad P_{m}(\lambda x)=\lambda^{m} P_{m}(x), \quad$ for any $x \in \mathbb{R}^{n}, \lambda>0$,
$\Delta P_{k}=0, \quad \Delta P_{m}=0 \quad$ in \mathbb{R}^{n}.
a. Show that
$\frac{\partial P_{k}(x)}{\partial \nu}=k P_{k}(x), \quad \frac{\partial P_{m}(x)}{\partial \nu}=m P_{m}(x) \quad$ on ∂B_{1},
where $B_{1}=\left\{x \in \mathbb{R}^{n}:|x|<1\right\}$ and ν is the outward normal on ∂B_{1}.
b. Use a and Green's second identity to prove that

$$
\int_{\partial B_{1}} P_{k}(x) P_{m}(x) d S=0, \quad \text { if } k \neq m .
$$

