QUALIFYING EXAMINATION AUGUST 2003 MATH 523 - Prof. Tournier

Each problem is worth 20 points.

1. Find the solution of the problem

$$u_y + u_x^2 z = 0$$
$$u(x, 0) = x^2$$

2. For $x^2 + y^2 < 1$, let

$$v(x,y) = \frac{1 - (x^2 + y^2)}{2\pi} \int_0^{2\pi} \frac{\cos\theta\sin\theta}{(x - \cos\theta)^2 + (y - \sin\theta)^2} \, d\theta$$

Find the explicit formula for v and justify your answer.

3. Let $B_1(0)$ be the unit ball in \mathbb{R}^3 . Suppose $u \in C(\overline{B_1(0)}) \cap C^2(B_1(0) \setminus \{0\})$ and $\Delta u = 0$ in $B_1(0) \setminus \{0\}$.

a) Show that
$$\int_{B_1(0)} u(x)\Delta\phi(x)dx = 0$$
 for all $\phi \in C_0^{\infty}(B_1(0))$.

b) Give an example of a function $u \in C^2(\overline{B_1(0)} \setminus \{0\})$ such that $\Delta u = 0$ in $B_1(0) \setminus \{0\}$ and such that the result in a) does not hold. Compute $\int_{B_1(0)} u(x) \Delta \phi(x) dx$ for $\phi \in C_0^\infty(B_1(0))$.

- 4. Let u be bounded and continuous on $\mathbb{R}^n \times [0,T]$ and $u_t \Delta u = 0$ on $\mathbb{R}^n \times (0,T)$.
 - a) Show that $\sup_{\mathbb{R}^n \times [0,T]} u = \sup_{x \in \mathbb{R}^n} u(x,0).$ Hint: Consider $v(x,t) = u(x,t) \varepsilon(nt + |x|^2).$

b) Write a formula for the solution u of

 $u_t - \Delta u = 0$ u(x, 0) = g(x) where g is continuous

where g is continuous with compact support in \mathbb{R}^n .

5. Find a formula for the solution of

$$u_{tt} - u_{xx} + u = 0$$
 in $\mathbb{R} \times (0, \infty)$

such that

$$u(x,0) = f(x)$$
$$u_t(x,0) = g(x)$$

where $f, g \in C_0^{\infty}(\mathbb{R})$. Hint: Let v(x, y, t) = h(y)u(x, t). Find h so that v solves the 2-dimensional wave equation.