QUALIFYING EXAMINATION
 AUGUST 2003
 MATH 523 - Prof. Tournier

Each problem is worth 20 points.

1. Find the solution of the problem

$$
\begin{aligned}
u_{y}+u_{x}^{2} z & =0 \\
u(x, 0) & =x^{2}
\end{aligned}
$$

2. For $x^{2}+y^{2}<1$, let

$$
v(x, y)=\frac{1-\left(x^{2}+y^{2}\right)}{2 \pi} \int_{0}^{2 \pi} \frac{\cos \theta \sin \theta}{(x-\cos \theta)^{2}+(y-\sin \theta)^{2}} d \theta
$$

Find the explitic formula for v and justify your answer.
3. Let $B_{1}(0)$ be the unit ball in \mathbb{R}^{3}. Suppose $u \in C\left(\overline{B_{1}(0)}\right) \cap C^{2}\left(B_{1}(0) \backslash\{0\}\right)$ and $\Delta u=0$ in $B_{1}(0) \backslash\{0\}$.
a) Show that $\int_{B_{1}(0)} u(x) \Delta \phi(x) d x=0$ for all $\phi \in C_{0}^{\infty}\left(B_{1}(0)\right)$.
b) Give an example of a function $u \in C^{2}\left(\overline{B_{1}(0)} \backslash\{0\}\right)$ such that $\Delta u=0$ in $B_{1}(0) \backslash\{0\}$ and such that the result in a) does not hold. Compute $\int_{B_{1}(0)} u(x) \Delta \phi(x) d x$ for $\phi \in C_{0}^{\infty}\left(B_{1}(0)\right)$.
4. Let u be bounded and continuous on $\mathbb{R}^{n} \times[0, T]$ and $u_{t}-\Delta u=0$ on $\mathbb{R}^{n} \times(0, T)$.
a) Show that $\sup _{\mathbb{R}^{n} \times[0, T]} u=\sup _{x \in \mathbb{R}^{n}} u(x, 0)$.

Hint: Consider $v(x, t)=u(x, t)-\varepsilon\left(n t+|x|^{2}\right)$.
b) Write a formula for the solution u of

$$
\begin{aligned}
& u_{t}-\Delta u=0 \\
& u(x, 0)=g(x) \quad \text { where } g \text { is continuous }
\end{aligned}
$$

where g is continuous with compact support in \mathbb{R}^{n}.
5. Find a formula for the solution of

$$
u_{t t}-u_{x x}+u=0 \quad \text { in } \quad \mathbb{R} \times(0, \infty)
$$

such that

$$
\begin{aligned}
& u(x, 0)=f(x) \\
& u_{t}(x, 0)=g(x)
\end{aligned}
$$

where $f, g \in C_{0}^{\infty}(\mathbb{R})$.
Hint: Let $v(x, y, t)=h(y) u(x, t)$.
Find h so that v solves the 2 -dimensional wave equation.

