QUALIFYING EXAMINATION

JANUARY 2001
MATH 523 - Prof. Cai

1. (20pts) Solve the initial value problem

$$
\left\{\begin{aligned}
x u \frac{\partial u}{\partial x}-\frac{\partial u}{\partial y} & =0 \\
u(x, 0) & =x
\end{aligned}\right.
$$

2. (20pts) For $n=2$ dimensions, let

$$
v=\frac{1}{8 \pi} r^{2} \log r, \quad r=|x-\xi|, \quad x, \xi \in R^{2}
$$

(a) Show that $\Delta^{2} v=0$ for $r>0$.

$$
\left[\text { Hint: } \quad \Delta=\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}} \quad \text { and } \quad \Delta v=\frac{1+\log r}{2 \pi} .\right]
$$

(b) Show that for $u \in C^{4}(\Omega)$ and $\xi \in \Omega$

$$
u(\xi)=\int_{\Omega} v \Delta^{2} u d x-\int_{\partial \Omega}\left(v \frac{\partial \Delta u}{\partial n}-\Delta u \frac{\partial v}{\partial n}+\Delta v \frac{\partial u}{\partial n}-u \frac{\partial \Delta v}{\partial n}\right) d S
$$

[Hint: Use Green's identity $\int_{\Omega_{\rho}} v \Delta u d x=\int_{\Omega_{\rho}} u \Delta v d x+\int_{\partial \Omega_{\rho}}\left(v \frac{\partial u}{\partial n}-u \frac{\partial v}{\partial n}\right) d S$ with u replaced by Δu where $\Omega_{\rho}=\Omega \backslash B(\xi, \rho)$ and $B(\xi, \rho)$ is a disk centered at ξ with radius ρ.]
(c) Show that v is a fundamental solution for the operator Δ^{2}.
3. (20pts) Let Ω be a bounded domain in R^{n} with smooth boundary $\partial \Omega$ and let n be the outward unit vector normal to the boundary. Prove that the following problem has unique solution in $C^{2}(\Omega) \cap C^{0}(\bar{\Omega})$:

$$
\left\{\begin{aligned}
\Delta u & =f \quad \text { in } \quad \Omega, \\
\frac{\partial u}{\partial n}+\beta u & =g \quad \text { on } \partial \Omega
\end{aligned}\right.
$$

where $\frac{\partial u}{\partial n}$ stands for the outward normal derivative, β is a positive number, and f and g are sufficient smooth.
4. (20pts) Use Hadamard's method of descent to derive an explicit formula of the solution for two-dimentional wave equation

$$
\left\{\begin{aligned}
\frac{\partial^{2} u}{\partial t^{2}}-\Delta u & =0 \\
u(x, 0) & =f(x)
\end{aligned} \text { in } R^{2} \times R_{+},\right.
$$

[Hint: The explicit formula for three-dimensional wave equation is

$$
\left.u(x, t)=\frac{1}{4 \pi c^{2} t} \int_{|y-x|=c t} g(y) d S_{y}+\frac{\partial}{\partial t}\left(\frac{1}{4 \pi c^{2} t} \int_{|y-x|=c t} f(y) d S_{y}\right) .\right]
$$

5. (20pts) Let ω be an open bounded set of R^{n}, for a fixed $T>0$ let

$$
\Omega=\{(x, t) \mid x \in \omega, 0<t<T\}
$$

and denote the "lower" boundary by

$$
\partial^{\prime} \Omega=\{(x, t) \mid \text { either } x \in \partial \omega, 0 \leq t \leq T \text { or } x \in \omega, t=0\} .
$$

Assume that $u \in C^{0}(\bar{\Omega}), u_{t} \in C^{0}(\Omega)$, and $u_{x_{i} x_{k}} \in C^{0}(\Omega)$ for $i, k=1, \ldots, n$, and $\frac{\partial u}{\partial t}-\Delta u \leq 0$. Prove that

$$
\max _{\bar{\Omega}} u=\max _{\partial^{\prime} \Omega} u .
$$

