MA-523 Qualifying Exam, August 10, 2001

P. Stefanov

Name:

1. (20 pts)

(a) Prove that the function

$$
K(x, \xi)=\frac{1}{2}|x-\xi|, \quad x \in \mathbf{R}, \xi \in \mathbf{R}
$$

is a fundamental solution for the operator $P=\frac{d^{2}}{d x^{2}}$ with pole ξ.
(b) Find the Green's function $G(x, \xi)$ of the operator P above in the interval $[0,1]$, i.e., find $G(x, \xi)$, for $x \in[0,1], \xi \in(0,1)$, such that

$$
\frac{d^{2}}{d x^{2}} G(x, \xi)=\delta_{\xi}(x), \quad G(0, \xi)=G(1, \xi)=0, \quad \forall \xi \in(0,1)
$$

Plot $G(x, \xi)$ as a function of x for a fixed $\xi \in(0,1)$, for example $\xi=1 / 3$.
(c) Using the result in (b) express the solution of the problem

$$
u^{\prime \prime}(x)=f(x), \quad u(0)=u(1)=0
$$

where f is integrable over $[0,1]$, as certain integral(s) of f. Use this to solve

$$
\begin{equation*}
u^{\prime \prime}=e^{x} \quad \text { in }(0,1), \quad u(0)=u(1)=0 \tag{1}
\end{equation*}
$$

and then compare your answer with the solution of (1) that can be found directly by integration.
2. (15 pts) Solve the following initial value problem for the transport equation

$$
\left\{\begin{align*}
\partial_{t} u(t, x) & =-v \cdot \nabla_{x} u(t, x)-a(x) u(t, x), & & t \in \mathbf{R}, x \in \mathbf{R}^{n}, \tag{2}\\
u(0, x) & =f(x), & & x \in \mathbf{R}^{n} .
\end{align*}\right.
$$

Here $0 \neq v \in \mathbf{R}^{n}$ is a fixed vector, $a(x)$ and $f(x)$ are given continuous functions of $x \in \mathbf{R}^{n}$, and $\nabla_{x}=$ $\left(\partial_{x_{1}}, \ldots, \partial_{x_{n}}\right)$.

3. (17 pts)

(a) Find the type of the equation

$$
\begin{equation*}
y u_{x x}+(x+y) u_{x y}+x u_{y y}=0, \quad x \neq y \tag{3}
\end{equation*}
$$

and make a change of variables reducing (3) into its normal form.
(b) Find the general solution of (3). Write down the solution in the original (x, y) variables.
4. (16 pts) Let $K \in \mathbf{R}^{n}, n \geq 2$, be a bounded domain with smooth boundary, let $D=\mathbf{R}^{n} \backslash K$ be its exterior, and consider the "exterior" Dirichlet problem

$$
\begin{equation*}
\Delta u=0 \quad \text { in } D,\left.\quad u\right|_{\partial D}=f \tag{4}
\end{equation*}
$$

where $f \in C(\partial D)$.
(a) Prove that the solution of (4) is unique in the class of functions $u \in C(\bar{D}) \cap C^{2}(D)$ satisfying the limit $\lim _{|x| \rightarrow \infty} u(x)=0$.
(b) Show that without the limit condition, the uniqueness may fail. To this end, assume that $D=$ $\{x ;|x|>1\}$ is the complement of the unit ball in \mathbf{R}^{3} and $f(x)=1$, and find explicitly two different solutions of (4) in $C(\bar{D}) \cap C^{2}(D)$ such that at least one of them does not tend to 0 , as $|x| \rightarrow \infty$.
5. (15 pts) Let $D \subset \mathbf{R}^{n}, n \geq 2$ be an open set and let $u \in C^{2}(D)$. Prove that if for any sphere S belonging to D together with its interior, we have

$$
\int_{S} \frac{\partial u}{\partial \nu} d S_{x}=0
$$

then u is harmonic in D. Here ν is the outer normal to S as usual.
6. (17 pts)
(a) Let Q be the square $Q=\left\{(x, y) \in \mathbf{R}^{2} ; 0<x<\pi, 0<y<\pi\right\}$. Solve the following heat transfer problem

$$
\left\{\begin{aligned}
u_{t}-\Delta u & =0, & & \text { for } t>0,(x, y) \in Q \\
\left.u\right|_{\partial Q} & =0, & & \text { for } t>0 \\
\left.u\right|_{t=0} & =x y(\pi-y), & & \text { for }(x, y) \in Q
\end{aligned}\right.
$$

where $\Delta=\partial_{x}^{2}+\partial_{y}^{2}$.
(b) Prove that $0<u(t, x, y)<\pi^{3} / 4$ for all $t>0$ and $(x, y) \in Q$.
(c) Prove that there exists a constant $C>0$ such that $0<u(t, x, y) \leq C e^{-2 t}$ for $t \geq 0$ and $(x, y) \in Q$.

