QUALIFYING EXAMINATION

JANUARY 2000
MATH 523 - Prof. SaBarreto
1)a) Solve

$$
\begin{gathered}
\frac{\partial u}{\partial y}+u^{5} \frac{\partial u}{\partial x}=0, \\
u(x, 0)=f(x) .
\end{gathered}
$$

b) Find the lines on the plane (x, y) where u is constant. Use this to examine whether u will develop shocks in the region $y>0$.
2) Let $u(x, t) \in C^{2}\left(\mathbb{R}^{n} \times(0, \infty)\right)$ satisfy

$$
\begin{gathered}
\left(\frac{\partial^{2}}{\partial t^{2}}-\Delta\right) u(x, t)=f(x, t), \quad x \in \mathbb{R}^{n}, t>0 \\
u(x, 0)=0, \quad \frac{\partial}{\partial t} u(x, 0)=0
\end{gathered}
$$

Find a formula for $u(x, t)$ in terms of f when $n=2,3$.
3) Let $f \in C^{\infty}(\mathbb{R})$ and let $u(x, t)$ be the solution to

$$
\begin{gathered}
\left(\frac{\partial}{\partial t}-\Delta+f(t)\right) u(x, t)=0, \quad x \in \mathbb{R}^{n}, t>0 \\
u(x, 0)=\phi(x)
\end{gathered}
$$

Find a formula for u in terms of f and ϕ.
4) a) Let $\Omega \subset \mathbb{R}^{n}$ be an open subset and let $S \subset \Omega$ be a real analytic hypersurface. Let ϕ, ψ be real analytic functions on S. Show that there exist an open set $U \subset \Omega$, with $S \subset U$, and a unique real analytic function $u \in C^{\omega}(U)$ such that

$$
\begin{gather*}
\Delta u=0, \quad \text { in } U \\
\left.u\right|_{S}=\phi,\left.\quad \partial_{\mu} u\right|_{S}=\psi, \tag{1}
\end{gather*}
$$

where ∂_{μ} is the normal derivative to S.
b) If ϕ_{n}, and ψ_{n} are sequences of real analytic functions converging uniformly to zero. Is it true that the solutions u_{n} of the problem (??) with data ϕ_{n}, ψ_{n} converge uniformly to zero?
Hint: Take $S=\{y=0\} \subset \mathbb{R}^{2}, \phi_{n}(x)=0$ and $\psi_{n}(x)=\frac{1}{n} \sin (n x)$.
5) Let $f \in C^{2}(\mathbb{R})$ satisfy $f^{\prime \prime}(t) \geq 0$ for every $t \in \mathbb{R}$ and

$$
\lim _{|t| \rightarrow \infty} \frac{f(t)}{|t|}=0
$$

Show that f is constant. What is the geometric interpretation of this result?
Hint: Suppose that $f^{\prime}\left(t_{0}\right)>0$ for some $t_{0} \in \mathbb{R}$. Show that in this case $f(t)-f\left(t_{0}\right) \geq f^{\prime}\left(t_{0}\right)\left(t-t_{0}\right)$ for every $t>t_{0}$. Prove a similar estimate if $f^{\prime}\left(t_{0}\right)<0$ for some t_{0}.
6) The Poisson kernel of the ball $B(x, R)=\left\{y \in \mathbb{R}^{n}:|x-y|<R\right\}$ is

$$
H(x, y, \xi)=\frac{1}{R \omega_{n}} \frac{R^{2}-|x-\xi|^{2}}{|y-\xi|^{n}}
$$

where ω_{n} is the surface area on the sphere in \mathbb{R}^{n}. So, if u is harmonic in $B(x, R)$ and continuous in $\overline{B(x, R)}$, and if $|x-\xi|<R$, we have

$$
u(\xi)=\frac{R^{2}-|x-\xi|^{2}}{R \omega_{n}} \int_{|y-x|=R} \frac{1}{|y-\xi|^{n}} u(y) d \sigma_{y}
$$

a) Use this to show that if u is harmonic in $B(x, R)$ and continuous in $\overline{B(x, R)}$ then

$$
\frac{\partial}{\partial x_{i}} u(x)=\frac{n}{R^{n+1} \omega_{n}} \int_{|y-x|=R}(y-x)_{i} u(y) d \sigma_{y}
$$

b) Show that if $z \in B(x, R)$ then

$$
|\nabla u(z)| \leq \frac{n}{R-|z|} \max _{|y|=R}|u(y)| .
$$

Hint: Apply the previous formula to balls centered at z and use the maximum principle.
c) Show that if $u(x) \in C^{2}\left(\mathbb{R}^{n}\right)$ satisfies $\Delta u(x)=0$ for every $x \in \mathbb{R}^{n}$, and

$$
\lim _{|x| \rightarrow \infty} \frac{1}{|x|} \max _{|x|=R}|u(x)|=0
$$

then u is constant. How do the functions, $\log |x|$, if $n=2$, and $|x|^{2-n}$, if $n>2$, fit into this result? Are they counter-examples?

