Qualifying Examination

August 2000

MATH 523 - Prof. Sa Barreto

1) Let $\Omega \subset \mathbb{R}^{n}$ be an open subset. Given $x \in \Omega$ and $r>0$, such that the ball $B(x, r)$ of center x and radius r is contained in Ω, the spherical mean $M(u, x, r)$ of a function $u \in C^{0}(\Omega)$ is defined by

$$
M(u, x, r)=\frac{1}{\omega_{n}} \int_{\mathbb{S}^{n}} u(x+r \omega) d \omega
$$

a)(10) Let $u \in C^{2}(\Omega)$, show that if $\Delta u=0$ in Ω then $u(x)=M(u, x, r)$ for every $x \in \Omega$ and $r>0$, such that $B(x, r) \subset \Omega$.
b)(10) Suppose that Ω is a bounded set. Let $u, v \in C^{2}(\Omega)$ satisfy $\Delta u=\Delta v=0$. Suppose that $u(x) \geq v(x)$ for every $x \in \Omega$. Show that if $u\left(x_{0}\right)=v\left(x_{0}\right)$ for a point x_{0} in Ω, then $u(x)=v(x)$ for every $x \in \Omega$.
c)(5) Let $\Omega=\left\{x \in \mathbb{R}^{3}: 1<|x|<3\right\}$. Find a function $u \in C^{2}(\Omega)$ such that $\Delta u=0$ in $\Omega, u(x)=0$ if $|x|=1$ and $u(x)=5$ if $|x|=3$. Justify all the steps in your solution.
2) Let $u(x, t) \in C^{2}\left(\mathbb{R}^{n} \times \mathbb{R}^{+}\right)$satisfy

$$
\begin{aligned}
& \left(\frac{\partial^{2}}{\partial t^{2}}-\Delta\right) u(x, t)=0 \text { in } \mathbb{R}^{n} \times \mathbb{R}^{+} \\
& u(x, 0)=g(x), \quad D_{t} u(x, 0)=f(x)
\end{aligned}
$$

a)(10) Let $E(t)=\frac{1}{2} \int_{\mathbb{R}^{n}}\left(|\nabla u|^{2}+\left|u_{t}\right|^{2}\right) d x$. Show that $E(t)=E(0)$ for every t.
a)(10) Show that if $f(x)$ is a radial function, i.e $f(x)=f(|x|)$, then the solution is also radial, i.e $u(x, t)=u(|x|, t)$.
b)(5) Suppose that n is odd and $f(x)=0$ if $|x|>4$. Let $K \subset \mathbb{R}^{n}$ be bounded set. Show that $\int_{K}|u(x, t)|^{2} d x=E(t)$ goes to zero as $t \rightarrow \infty$.
c)(10) Consider the question in item b, but now assume that n is even instead. Does $E(t) \rightarrow 0$ as $t \rightarrow \infty$?
$3)$ Let $u(x, t) \in C^{0}\left(\mathbb{R}^{n} \times \mathbb{R}^{+}\right)$satisfy

$$
\begin{gather*}
\left(\frac{\partial}{\partial t}-\Delta\right) u(x, t)=0 \text { in } \mathbb{R}^{n} \times \mathbb{R}^{+} \tag{0.1}\\
u(x, 0)=f(x)
\end{gather*}
$$

where $f(x)$ is bounded.
a)(10) Is this a non-characteristic Cauchy problem? This is an equation of second order, so why do we only set the value of the function at $t=0$, and not $D_{t} u(x, 0)$ as well?
a)(5) Is there a relation between the support of $u(x, t)$, for fixed t, and the support of $f(x)$? Does it make a difference if n is even or odd?
c)(5) What happens to $u(t, x)$ if we switch t to $-t$ in (0.1)?
d)(5) Is $u(x, t)$ uniquely defined by (0.1)?
4) Let $u(x, y)$ satisfy the equation

$$
\begin{gathered}
x \frac{\partial u}{\partial y}-y \frac{\partial u}{\partial x}=-\frac{1}{3} u^{4} \\
u(x, 0)=h(x)
\end{gathered}
$$

a) (5) Write the equation in polar coordinates.
b) (10) Use a to show that

$$
u(x, y)=\left[\tan ^{-1}\left(\frac{y}{x}\right)+\left(h\left(\sqrt{x^{2}+y^{2}}\right)\right)^{-3}-\frac{\pi}{2}\right)^{-\frac{1}{3}} .
$$

