QUALIFYING EXAMINATION

JANUARY 1998
MATH 523

1. a) Find a solution of

$$
\left\{\begin{array}{l}
x u_{y}-y u_{x}=u+1 \tag{*}\\
\text { with } u(x, x)=x^{2}
\end{array}\right.
$$

that is valid for all (x, y) in some neighborhood of $(1,1)$.
b) What is the largest domain of definition for the solution obtained in 1.a)?
c) Identify all points $\left(x_{0}, x_{0}\right)$ such that there exists a unique solution of $(*)$ in some neighborhood of $\left(x_{0}, x_{0}\right)$. Explain your reasoning.
(16 pts) 2. Let D be a smooth bounded domain in \mathbb{R}^{n} and let ν be the outward unit normal on ∂D. Prove that the problem

$$
\begin{aligned}
\triangle u & =f \text { in } D \\
\frac{d u}{d \nu} & =1 \text { on } \partial D
\end{aligned}
$$

has no C^{2} solution for some functions f in $C(\bar{D})$. (Hint: Use the divergence theorem.)
(17 pts)
3. Consider the problem:
a) Determine the regions in the $x y$ plane in which the first equation in $(* *)$ is hyperbolic, parabolic, or elliptic.
b) Let A denote the x axis, $A=\left\{(x, y) \in \mathbb{R}^{2}: y=0\right\}$. Find all points P_{0} in A such that there exists a unique real analytic solution of $(* *)$ in a sufficiently small neighborhood of P_{0} in \mathbb{R}^{2}. State carefully a theorem which justifies your answer.
c) Let u be a real analytic solution of $(* *)$ in some neighborhood of $(1,0)$. Is $u_{x y y}(1,0)$ uniquely determined? If so, compute its value.
(16 pts) 4. a) Let $\vec{x}=\left(x_{1}, x_{2}, x_{3}\right)$ and $B_{2}=\left\{\vec{x} \in \mathbb{R}^{3}:|\vec{x}|<2\right\}$. Find a formula (in terms of explicit functions or integrals of explicit functions on appropriate domains) for the solution in \bar{B}_{2} of

$$
(\Delta u)\left(x_{1}, x_{2}, x_{3}\right)=\left\{\begin{array}{l}
1, \text { for }\left|\left(x_{1}, x_{2}, x_{3}\right)\right| \leq 1 \\
0, \text { for } 1<\left|\left(x_{1}, x_{2}, x_{3}\right)\right| \leq 2
\end{array}\right.
$$

and $u\left(x_{1}, x_{2}, x_{3}\right)=4$ when $\left|\left(x_{1}, x_{2}, x_{3}\right)\right|=2$.
(Hint: The Green's function for the ball, $B_{R}=\left\{\vec{y} \in \mathbb{R}^{3}:|\vec{y}|<R\right\}$, is given by:

$$
G(\vec{y}, \vec{\xi})=\frac{1}{4 \pi|\vec{y}-\vec{\xi}|}-\frac{R}{4 \pi|\vec{\xi}| \cdot|\vec{y}-\vec{\xi} *|}
$$

for $(\vec{y}, \vec{\xi})$ in B_{R} where $\vec{\xi} *=\frac{R^{2}}{|\vec{\xi}|^{2}} \vec{\xi}$.
b) What can you say about the maximum or minimum value of u on \bar{B}_{2} ?
5. a) Find a solution of:

$$
\begin{equation*}
u_{t}-u_{x x}=x \text { for } 0<x<1, \quad t>0 \tag{***}
\end{equation*}
$$

with initial and boundary conditions

$$
\begin{aligned}
& u(x, 0)=0 \quad \text { for } \quad 0 \leq x \leq 1 \\
& u(0, t)=u(1, t)=0 \quad \text { for } \quad t>0 .
\end{aligned}
$$

(Hint: Use separation of variables and Fourier series after subtracting a convenient time-independent solution of $(* * *)$. You may express the Fourier coefficients as integrals of explicit functions on appropriate domains without evaluating these integrals.)
b) State and prove a uniqueness result for this problem.
(17 pts) 6. Let $\vec{x}=\left(x_{1}, x_{2}, x_{3}\right)$. Recall that the solution of $u_{t t}-u_{x_{1} x_{1}}-u_{x_{2} x_{2}}-u_{x_{3} x_{3}}=0$ for $\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}, \quad t \geq 0$ satisfying $u(\vec{x}, 0)=0, u_{t}(\vec{x}, 0)=g(\vec{x})$ for $\vec{x} \in \mathbb{R}^{3}$ is given by:

$$
u(\vec{x}, t)=\frac{1}{4 \pi t} \int_{\left\{\vec{y} \in \mathbb{R}^{3}:|\vec{x}-\vec{y}|=t\right\}} g(y) d s_{y}=\frac{t}{4 \pi} \int_{\left\{\vec{\xi} \in \mathbb{R}^{3}:|\vec{\xi}|=1\right\}} g(x+t \xi) d s
$$

where $d s_{y}$ represents surface measure on $\left\{\vec{y} \in \mathbb{R}^{3}:|\vec{y}-\vec{x}|=t\right\}$ and $d s$ represents surface measure on $\left\{\vec{\xi} \in \mathbb{R}^{3}:|\xi|=1\right\}$. Assume

$$
g(\vec{x})=\left\{\begin{array}{l}
\cos \left(|\vec{x}|^{2}\right), \text { for }|\vec{x}| \leq \sqrt{\frac{\pi}{2}} \\
0, \text { for }|\vec{x}|>\sqrt{\frac{\pi}{2}}
\end{array}\right.
$$

a) Identify $\left\{(\vec{x}, t) \in \mathbb{R}^{3} \times(0, \infty): u(\vec{x}, t)=0\right\}$.
b) If $|\vec{x}|=\sqrt{\pi}$, what is the first time t_{0} at which $u\left(\vec{x}, t_{0}\right)$ is nonzero?
c) Is the solution $u(\vec{x}, t)$ twice continuously differentiable on $\mathbb{R}^{3} \times(0, \infty)$? Justify your answer.
d) Evaluate $\lim _{t \rightarrow \infty} u(\vec{x}, t)$.

