QUALIFYING EXAMINATION JANUARY 1998 MATH 523

(17 pts) 1. a) Find a solution of

(*)
$$\begin{cases} xu_y - yu_x = u + 1\\ \text{with } u(x, x) = x^2 \end{cases}$$

that is valid for all (x, y) in some neighborhood of (1, 1).

- b) What is the largest domain of definition for the solution obtained in 1.a)?
- c) Identify <u>all</u> points (x_0, x_0) such that there exists a unique solution of (*) in some neighborhood of (x_0, x_0) . Explain your reasoning.
- (16 pts) 2. Let D be a smooth bounded domain in \mathbb{R}^n and let ν be the outward unit normal on ∂D . Prove that the problem

$$\Delta u = f \text{ in } D,$$
$$\frac{du}{d\nu} = 1 \text{ on } \partial D$$

has no C^2 solution for some functions f in $C(\overline{D})$. (Hint: Use the divergence theorem.)

(17 pts) 3. Consider the problem:

$$(**) \qquad \begin{aligned} u_{xx} + x \cdot u_{xy} + (2y - x^2)u_{yy} - u_y &= 0, \\ u(x, 0) &= x^2, \quad u_y(x, 0) = x. \end{aligned}$$

- a) Determine the regions in the xy plane in which the first equation in (**) is hyperbolic, parabolic, or elliptic.
- b) Let A denote the x axis, $A = \{(x, y) \in \mathbb{R}^2 : y = 0\}$. Find all points P_0 in A such that there exists a unique real analytic solution of (**) in a sufficiently small neighborhood of P_0 in \mathbb{R}^2 . State carefully a theorem which justifies your answer.
- c) Let u be a real analytic solution of (**) in some neighborhood of (1,0). Is $u_{xyy}(1,0)$ uniquely determined? If so, compute its value.

(16 pts) 4. a) Let $\vec{x} = (x_1, x_2, x_3)$ and $B_2 = \{\vec{x} \in \mathbb{R}^3 : |\vec{x}| < 2\}$. Find a formula (in terms of explicit functions or integrals of explicit functions on appropriate domains) for the solution in \overline{B}_2 of

$$(\bigtriangleup u)(x_1, x_2, x_3) = \left\{ egin{array}{ll} 1, \ {
m for} \ |(x_1, x_2, x_3)| \leq 1 \\ 0, \ {
m for} \ 1 < |(x_1, x_2, x_3)| \leq 2 \end{array}
ight.$$

and $u(x_1, x_2, x_3) = 4$ when $|(x_1, x_2, x_3)| = 2$.

(<u>Hint</u>: The Green's function for the ball, $B_R = \{ \vec{y} \in \mathbb{R}^3 : |\vec{y}| < R \}$, is given by:

$$G(\vec{y}, \vec{\xi}) = \frac{1}{4\pi |\vec{y} - \vec{\xi}|} - \frac{R}{4\pi |\vec{\xi}| \cdot |\vec{y} - \vec{\xi} \cdot |\vec{y}|}$$

for $(\vec{y}, \vec{\xi})$ in B_R where $\vec{\xi} * = \frac{R^2}{|\vec{\xi}|^2} \vec{\xi}$.

b) What can you say about the maximum or minimum value of u on \overline{B}_2 ?

(17 pts) 5. a) Find a solution of:

$$(***) u_t - u_{xx} = x \text{ for } 0 < x < 1, \quad t > 0$$

with initial and boundary conditions

$$u(x,0) = 0 \quad ext{for} \quad 0 \le x \le 1, \ u(0,t) = u(1,t) = 0 \quad ext{for} \quad t > 0.$$

(Hint: Use separation of variables and Fourier series after subtracting a convenient time-independent solution of (* * *). You may express the Fourier coefficients as integrals of explicit functions on appropriate domains without evaluating these integrals.)

b) State and prove a uniqueness result for this problem.

(17 pts) 6. Let $\vec{x} = (x_1, x_2, x_3)$. Recall that the solution of $u_{tt} - u_{x_1x_1} - u_{x_2x_2} - u_{x_3x_3} = 0$ for $(x_1, x_2, x_3) \in \mathbb{R}^3$, $t \ge 0$ satisfying $u(\vec{x}, 0) = 0, u_t(\vec{x}, 0) = g(\vec{x})$ for $\vec{x} \in \mathbb{R}^3$ is given by:

$$u(\vec{x},t) = \frac{1}{4\pi t} \int_{\{\vec{y}\in\mathbb{R}^3: |\vec{x}-\vec{y}|=t\}} g(y) ds_y = \frac{t}{4\pi} \int_{\{\vec{\xi}\in\mathbb{R}^3: |\vec{\xi}|=1\}} g(x+t\xi) ds$$

where ds_y represents surface measure on $\{\vec{y} \in \mathbb{R}^3 : |\vec{y} - \vec{x}| = t\}$ and ds represents surface measure on $\{\vec{\xi} \in \mathbb{R}^3 : |\xi| = 1\}$. Assume

$$g(\vec{x}) = \begin{cases} \cos(|\vec{x}|^2), \text{ for } |\vec{x}| \le \sqrt{\frac{\pi}{2}} \\ 0, \text{ for } |\vec{x}| > \sqrt{\frac{\pi}{2}}. \end{cases}$$

- a) Identify $\{(\vec{x},t)\in\mathbb{R}^3 imes(0,\infty):u(\vec{x},t)=0\}.$
- b) If $|\vec{x}| = \sqrt{\pi}$, what is the first time t_0 at which $u(\vec{x}, t_0)$ is nonzero? c) Is the solution $u(\vec{x}, t)$ twice continuously differentiable on $\mathbb{R}^3 \times (0, \infty)$? Justify your answer.
- d) Evaluate $\lim_{t\to\infty} u(\vec{x}, t)$.