QUALIFYING EXAMINATION
 AUGUST 1998
 MATH 523 - Prof. Zachmanoglou

1. Consider the first order linear PDE

$$
\begin{equation*}
u_{x}-y u_{y}+u=0, \quad(x, y) \in \mathbb{R}^{2} \tag{20}
\end{equation*}
$$

(a) Find the characteristic curves of $(*)$.
(b) Make a transformation of coordinates,

$$
\xi=\xi(x, y), \quad \eta=\eta(x, y)
$$

to obtain the canonical form of $(*)$. Hint: Choose $\eta(x, y)$ so that its level curves are the characteristic curves of $(*)$.
(c) Solve the canonical form of $(*)$ and obtain the general solution of $(*)$.
(d) Find the solution of $(*)$ satisfying the initial condition

$$
u(0, y)=y^{2}, \quad y \in \mathbb{R}
$$

2. Find the solution of the following Dirichlet problem for an annulus, in polar coordinates,

$$
\begin{gather*}
\nabla^{2} u(r, \theta)=0 ; \quad 1<r<2, \quad 0 \leq \theta \leq 2 \pi \tag{15}\\
u(1, \theta)=3+4 \sin \theta ; \quad 0 \leq \theta \leq 2 \pi \\
u(2, \theta)=5+6 \sin \theta ; \quad 0 \leq \theta \leq 2 \pi \tag{15}
\end{gather*}
$$

3. Consider the Neumann problem for the unit ball in \mathbb{R}^{3}, in spherical coordinates,

$$
\begin{gathered}
\nabla^{2} u(r, \theta, \varphi)=0,0 \leq r<1,0 \leq \theta \leq 2 \pi, 0 \leq \varphi \leq \pi \\
\frac{\partial u}{\partial n}(1, \theta, \varphi)=\sin \varphi \cos \theta ; 0 \leq \theta \leq 2 \pi, 0 \leq \varphi \leq \pi
\end{gathered}
$$

where $\frac{\partial u}{\partial n}$ denotes the directional derivative of u in the exterior normal direction.
(a) Verify that the necessary condition for the existence of a solution is satisfied.
(b) Find all solutions of the problem.
$[x=r \sin \varphi \cos \theta, y=r \sin \varphi \sin \theta, z=r \cos \varphi$. The element of surface on the unit sphere is $d \sigma=\sin \varphi d \theta d \varphi$].
4. Consider the initial-boundary value problem for the wave equation in one space variable,

$$
\begin{aligned}
& u_{x x}-u_{t t}=0 ; \quad 0<x<L, \quad 0<t \\
& u(0, t)=u(L, t)=0 ; \quad 0 \leq t \\
& u(x, 0)=\varphi(x), \quad u_{t}(x, 0)=\psi(x) ; \quad 0 \leq x \leq L
\end{aligned}
$$

where φ and ψ are given functions. Use separation of variables and Fourier series to obtain the "formal"series solution of the problem ("formal": do not be concerned with convergence, continuity or differentiability). Make sure to give the formulas for the computation of the coefficients of the series.
5. Suppose that $f \in C^{2}(\mathbb{R})$ and f is periodic of period 2π. Prove that there is a constant $M>0$, such that the Fourier coefficients of f satisfy the inequalities

$$
\left|a_{n}\right| \leq \frac{M}{n^{2}},\left|b_{n}\right| \leq \frac{M}{n^{2}} ; n=1,2, \ldots
$$

(20) 6. (a) Let Ω be a bounded normal domain in \mathbb{R}^{2} with smooth boundary $\partial \Omega$ and let \vec{n} be the exterior unit normal on $\partial \Omega$. Suppose that $u(x, y, t)$ is of class C^{2} for $(x, y) \in \bar{\Omega}$ and $0 \leq t$, and satisfies the PDE

$$
u_{x x}+u_{y y}-u_{t}-q u=0 ; \quad(x, y) \in \Omega, 0<t
$$

where q is a nonnegative continuous function for $(x, y) \in \bar{\Omega}$ and $0 \leq t$, and the boundary condition

$$
\frac{\partial u}{\partial n}(x, y, t)=0 ; \quad(x, y) \in \partial \Omega, 0 \leq t
$$

Show that for any $T \geq 0$,

$$
\left.\iint_{\Omega} u^{2}\right|_{t=T} d x d y \leq\left.\iint_{\Omega} u^{2}\right|_{t=0} d x d y
$$

(b) Write down the most general initial-boundary value problem for which you can prove uniqueness of solution using the result in (a), and assuming sufficient differentiability.

