QUALIFYING EXAMINATION

JANUARY 1997
MATH 523
(17 pts) 1. (a) Determine the regions where the equation

$$
y^{2} u_{x x}+\frac{3}{2} x y u_{x y}-x^{2} u_{y y}+x u_{x}+y u_{y}=0
$$

is hyperbolic, parabolic or elliptic.
(b) Find the equations of the characteristic curves.
(17 pts) 2. Find the solution to the initial-value boundary-value problem

$$
\begin{array}{lll}
v_{t}=v_{x x}+f(x, t), & 0<x<\infty, & t>0 \\
v(x, 0)=0, & 0<x<\infty, & \\
v(0, t)=0, & & t>0
\end{array}
$$

where $f(x, t)$ is a bounded continuous function that vanishes at $x=0$.
(17 pts) 3. (a) If Ω is a bounded normal domain in \mathbb{R}^{3}, with boundary $\partial \Omega$, and $q(x) \in C(\Omega)$, $q(x) \geq 0$, derive an energy integral for the system

$$
\begin{array}{ll}
u_{t t}-\nabla^{2} u+q(x) u=0, & x \in \Omega, \quad t>0 \\
u(x, t)=0, & x \in \partial \Omega
\end{array}
$$

and show that the resulting energy integral is constant in time.
(b) Use the results of part (a) to show that small errors in the data $g(x), h(x)$ of the system

$$
\begin{array}{lcc}
u_{t t}-\nabla^{2} u+q(x) u=0, & x \in \Omega, & t>0 \\
u(x, t)=0, & x \in \partial \Omega, & t>0 \\
u(x, 0)=g(x), \quad u_{t}(x, 0)=h(x), & x \in \Omega &
\end{array}
$$

produce small changes in the solution. Assume that $g(x) \in C^{1}(\Omega)$, $h(x) \in C(\Omega)$.
(18 pts) 4. Find the explicit form of the solution $u(x, t)$ for $t>0$ for the system

$$
\begin{aligned}
& u_{t}+u^{2} u_{x}=0, \quad-\infty<x<\infty, \quad t>0 \\
& u(x, 0)= \begin{cases}x, & 0 \leq x \\
0, & x<0\end{cases}
\end{aligned}
$$

Do shocks develop for $t>0$?
(17 pts) 5. Let Ω be the hemisphere, $\Omega=\left\{x \in \mathbb{R}^{3}| | x \mid<a, x_{3}>0\right\}$ and let $u(x) \in C^{2}(\Omega) \cap C(\bar{\Omega})$ be a solution of the Dirichlet problem

$$
\left.\begin{array}{l}
\nabla^{2} u=0, \quad x \in \Omega \\
u(x)=\left\{\begin{array}{ll}
g(x), & |x|=a, \\
0, & |x|<a,
\end{array} x_{3}>0\right.
\end{array}\right\}
$$

where $g(x)$ is a continuous function on the surface $|x|=a, x_{3}>0$, with $g(x)=0$ at $x_{3}=0$. Find the explicit form of the solution $u(x)$, expressed in terms of an integral over the surface $\partial \Omega$.
(14 pts) 6. (a) Show, using the appropriate Green's identity that the Robin problem

$$
\begin{array}{ll}
\triangle u=0, & x \in \Omega \\
\frac{\partial u}{\partial n}+\alpha u=h(x), & x \in \partial \Omega
\end{array}
$$

has a unique $C^{2}(\Omega) \cap C^{1}(\bar{\Omega})$ solution when $\alpha>0$. Here Ω is a bounded normal domain in \mathbb{R}^{3}.
(b) Find the solution to the problem in part (a) when Ω is the disk $x^{2}+y^{2}<1$, and the boundary data $h(x)$ expressed in polar coordinates (r, θ) is given by $h=\cos ^{2} \theta$.

