QUALIFYING EXAMINATION AUGUST 1997 MATH 523

1. Consider the initial value problem

$$zz_x + z_y = z$$
$$z(x,0) = 3x$$

- (a) Use an existence and uniqueness theorem to show that the problem has a unique solution in a neighborhood of every point of the initial curve y = 0.
- (b) Solve the problem.
- 2. Let Ω be a domain in \mathbb{R}^3 and $\vec{V} = (P, Q, R)$ be a nonvanishing C^1 vector field in Ω . Suppose that $u \in C^1(\Omega)$, grad $u \neq \vec{0}$ in Ω , and that the level surfaces of u,

$$u(x, y, z) = c,$$

are the integral surfaces of \vec{V} in Ω . Prove that if C is the integral curve of \vec{V} passing through $(x_0, y_0, z_0) \in \Omega$, then C must lie on the integral surface of \vec{V} passing through (x_0, y_0, z_0) .

3. Prove uniqueness of solution of the initial-boundary value problem

$$egin{aligned} & u_{xx} - u_{tt} - au_t - bu = F(x,t); & 0 < x < L, & 0 \leq t \ & u(x,0) = arphi(x), u_t(x,0) = \psi(x); & 0 \leq x \leq L \ & u(0,t) = f(t), u_x(L,t) = g(t); & 0 \leq t \end{aligned}$$

where a and b are nonnegative constants, and F, φ, ψ, f , and g are sufficiently smooth functions. Assume that u(x, t) is C^2 for $0 \le x \le L$ and $0 \le t$.

- 4. Let Ω be a bounded domain in \mathbb{R}^3 with smooth boundary $\partial \Omega$ and let \vec{n} be the exterior unit normal vector on $\partial \Omega$.
 - (a) Define carefully the Green's function $G(\vec{r}', \vec{r})$ for the Dirichlet problem for Ω .
 - (b) Write down the formula for the solution of the Dirichlet problem

$$abla^2 u = 0 \quad \text{in} \quad \Omega$$

 $u = f \quad \text{on} \quad \partial \Omega$

in terms of the Green's function.

- (c) Show that for each fixed \vec{r} in Ω , $\frac{\partial}{\partial n} G(\vec{r}', \vec{r}) \leq 0$, for $\vec{r}' \in \partial \Omega$.
- (d) Show that for each $\vec{r} \in \Omega$,

$$-\int_{\partial\Omega}rac{\partial}{\partial n}G(\vec{r}^{\,\prime},\vec{r})d\sigma=1.$$

5. Consider the initial-boundary value problem for the heat equation,

$$u_t - u_{xx} = 0; \quad 0 < x < L, \quad 0 < t$$
$$u_x(0, t) = u_x(L, t) = 0; \quad 0 \le t$$
$$u(x, 0) = \begin{cases} 0 \text{ for } 0 \le x < \frac{L}{2} \\ 100 \text{ for } \frac{L}{2} \le x \le L \end{cases}.$$

- (a) Find the series solution of the problem.
- (b) Does the series solution converge uniformly when t = 0? Explain.
- (c) Prove that the solution is C^{∞} when t > 0.
- 6. For each of the PDEs below, construct a solution which is in $C^2(\mathbb{R}^3)$ but not in $C^3(\mathbb{R}^3)$. If this is not possible, explain why.
 - (a) $u_{xx} + u_{yy} u_{zz} = 0$, $(x, y, z) \in \mathbb{R}^3$ (b) $u_{xx} + u_{yy} + u_{zz} = 0$, $(x, y, z) \in \mathbb{R}^3$ (c) $u_{xx} + u_{yy} - u_z = 0$, $(x, y, z) \in \mathbb{R}^3$
- 7. Consider the linear first order PDE in two variables,

$$a(x,y)u_x + b(x,y)u_y = 0$$

where a and b are C^1 and do not vanish simultaneously. Prove that if C is a characteristic curve of the PDE, then a solution u(x, y) of the PDE must be constant on C.

8. State carefully the theorem on the domain of dependence inequality for the wave equation in two space variables,

$$u_{xx} + u_{yy} - u_{tt} = 0.$$