QUALIFYING EXAMINATION
 AUGUST 1997
 MATH 523

1. Consider the initial value problem

$$
\begin{gathered}
z z_{x}+z_{y}=z \\
z(x, 0)=3 x
\end{gathered}
$$

(a) Use an existence and uniqueness theorem to show that the problem has a unique solution in a neighborhood of every point of the initial curve $y=0$.
(b) Solve the problem.
2. Let Ω be a domain in \mathbb{R}^{3} and $\vec{V}=(P, Q, R)$ be a nonvanishing C^{1} vector field in Ω. Suppose that $u \in C^{1}(\Omega), \operatorname{grad} u \neq \overrightarrow{0}$ in Ω, and that the level surfaces of u,

$$
u(x, y, z)=c
$$

are the integral surfaces of \vec{V} in Ω. Prove that if C is the integral curve of \vec{V} passing through $\left(x_{0}, y_{0}, z_{0}\right) \in \Omega$, then C must lie on the integral surface of \vec{V} passing through $\left(x_{0}, y_{0}, z_{0}\right)$.
3. Prove uniqueness of solution of the initial-boundary value problem

$$
\begin{gathered}
u_{x x}-u_{t t}-a u_{t}-b u=F(x, t) ; \quad 0<x<L, \quad 0 \leq t \\
u(x, 0)=\varphi(x), u_{t}(x, 0)=\psi(x) ; \quad 0 \leq x \leq L \\
u(0, t)=f(t), u_{x}(L, t)=g(t) ; \quad 0 \leq t
\end{gathered}
$$

where a and b are nonnegative constants, and F, φ, ψ, f, and g are sufficiently smooth functions. Assume that $u(x, t)$ is C^{2} for $0 \leq x \leq L$ and $0 \leq t$.
4. Let Ω be a bounded domain in \mathbb{R}^{3} with smooth boundary $\partial \Omega$ and let \vec{n} be the exterior unit normal vector on $\partial \Omega$.
(a) Define carefully the Green's function $G\left(\vec{r}^{\prime}, \vec{r}\right)$ for the Dirichlet problem for Ω.
(b) Write down the formula for the solution of the Dirichlet problem

$$
\begin{aligned}
& \nabla^{2} u=0 \quad \text { in } \quad \Omega \\
& u=f \quad \text { on } \quad \partial \Omega
\end{aligned}
$$

in terms of the Green's function.
(c) Show that for each fixed \vec{r} in $\Omega, \frac{\partial}{\partial n} G\left(\vec{r}^{\prime}, \vec{r}\right) \leq 0$, for $\vec{r}^{\prime} \in \partial \Omega$.
(d) Show that for each $\vec{r} \in \Omega$,

$$
-\int_{\partial \Omega} \frac{\partial}{\partial n} G\left(\vec{r}^{\prime}, \vec{r}\right) d \sigma=1
$$

5. Consider the initial-boundary value problem for the heat equation,

$$
\left.\begin{array}{c}
u_{t}-u_{x x}=0 ; \quad 0<x<L, \quad 0<t \\
u_{x}(0, t)=u_{x}(L, t)=0 ; \quad 0 \leq t
\end{array}\right] \begin{aligned}
& 0 \text { for } 0 \leq x<\frac{L}{2} \\
& 100 \text { for } \frac{L}{2} \leq x \leq L
\end{aligned} .
$$

(a) Find the series solution of the problem.
(b) Does the series solution converge uniformly when $t=0$? Explain.
(c) Prove that the solution is C^{∞} when $t>0$.
6. For each of the PDEs below, construct a solution which is in $C^{2}\left(R^{3}\right)$ but not in $C^{3}\left(\mathbb{R}^{3}\right)$. If this is not possible, explain why.
(a) $u_{x x}+u_{y y}-u_{z z}=0, \quad(x, y, z) \in \mathbb{R}^{3}$
(b) $u_{x x}+u_{y y}+u_{z z}=0, \quad(x, y, z) \in \mathbb{R}^{3}$
(c) $u_{x x}+u_{y y}-u_{z}=0, \quad(x, y, z) \in \mathbb{R}^{3}$
7. Consider the linear first order PDE in two variables,

$$
a(x, y) u_{x}+b(x, y) u_{y}=0
$$

where a and b are C^{1} and do not vanish simultaneously. Prove that if C is a characteristic curve of the PDE, then a solution $u(x, y)$ of the PDE must be constant on C.
8. State carefully the theorem on the domain of dependence inequality for the wave equation in two space variables,

$$
u_{x x}+u_{y y}-u_{t t}=0
$$

