QUALIFYING EXAMINATION

JANUARY 1996
MATH 523

1. (a) Find the integral curve of the vector field $\vec{V}(x, y, z)=\left(z^{2}, x^{2} y, x^{2} z\right)$ that passes through the point $(1,2,-1)$.
(b) Find the general solution of the PDE in the unknown u, and independent variables x, y, z,

$$
z^{2} u_{x}+x^{2} y u_{y}+x^{2} z u_{z}=0
$$

2. Consider the initial value problem in two independent variables x, y,

$$
\begin{gathered}
u_{x}=0, \quad(x, y) \in \mathbb{R}^{2} \\
u\left(x, x^{2}\right)=\sin x, \quad x \in \mathbb{R}
\end{gathered}
$$

Answer the following and justify your answer in each case.
(a) Is there a global solution to the problem?
(b) Is there a local solution of the problem in a (sufficiently small) neighborhood of the point $(-1,1)$?
(c) Is there a local solution of the problem in a (sufficiently small) neighborhood of the origin?
3. (a) If the plane $a x+b y+c z=0$ is characteristic for the equation $u_{x x}+u_{y y}-u_{z z}=0$, prove that $u(x, y, z)=F(a x+b y+c z)$ is a solution of the equation, for any function $F \in C^{2}\left(\mathbb{R}^{1}\right)$.
(b) Find all the characteristic surfaces of $u_{x x}+2 u_{y y}+3 u_{z z}=0$.
(c) Find all the characteristic curves of the equation $y u_{x}+u_{y}-u=e^{x y}$.
4. Let Ω be a bounded normal domain in \mathbb{R}^{3} with smooth boundary $\partial \Omega$, and let \vec{n} be the exterior unit normal vector on $\partial \Omega$. Prove uniqueness of solution of the boundary value problem for the biharmonic equation,

$$
\begin{array}{rlll}
\triangle(\triangle u) & =f & \text { in } \quad \Omega \\
u=g & & \text { on } & \partial \Omega \\
\frac{\partial u}{\partial n}=h & & \text { on } & \partial \Omega
\end{array}
$$

where f, g and h are sufficiently smooth in their domains. Assume $u \in C^{4}(\bar{\Omega})$.
5. Suppose that u is harmonic in an open set $\Omega \subset \mathbb{R}^{n}$ and that, for some $x^{o} \in \Omega$,

$$
u\left(x^{o}\right)=1
$$

and

$$
D^{\alpha} u\left(x^{o}\right)=0
$$

for all multiindices $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ with $|\alpha| \geq 1$. What can you conclude about u in some neighborhood of x^{o} ? Justify your conclusion.
6. (a) State the initial value problem for the wave equation $u_{x x}-u_{t t}=0$ in one space variable.
(b) Write down the formula for the solution $u(x, t)$.
(c) If the initial data vanish outside a finite interval, find $\lim _{t \rightarrow \infty} u(x, t)$ for any $x \in \mathbb{R}$. Is this limit necessarily zero? Explain.
7. Find a formula for the solution of the initial-boundary value problem for the heat equation in one space variable,

$$
\begin{gathered}
u_{t}-u_{x x}=0 ; \quad 0<x<L, \quad 0<t \\
u(0, t)=0, \quad u(L, t)=1 ; \quad 0 \leq t \\
u(x, 0)=\varphi(x) ; \quad 0 \leq x \leq L
\end{gathered}
$$

where $\varphi \in C^{1}$ and $\varphi(0)=0, \varphi(L)=1$.

