QUALIFYING EXAMINATION
 AUGUST 1996
 MATH 523

1. Solve the initial value problem

$$
\begin{gathered}
z^{2} z_{x}+x^{3} y z_{y}=x^{3} z \\
x=2 y, z=y^{2}, 0<y<\infty
\end{gathered}
$$

What problem occurs if the initial condition is given by

$$
\sqrt{2} y=x^{2}, \quad \sqrt{2} z=x^{2} \quad ?
$$

2. Find the function $u(x, t)$ (in explicit form) which satisfies the equation

$$
u_{t}+\left(u+u^{2}\right) u_{x}=0, \quad 0 \leq t, \quad-\infty<x<\infty
$$

and initial condition

$$
u(x, 0)= \begin{cases}0, & -\infty<x \leq 0 \\ x, & 0 \leq x<\infty\end{cases}
$$

Do shocks appear? If so, where? If not what is the asymptotic behavior of the solution when $t \rightarrow \infty$.
3. Use Green's Second Identity to show that the only solution $u \in C^{4}(\Omega) \cap C^{3}(\bar{\Omega})$ to the bi-harmonic equation

$$
\nabla^{2}\left(\nabla^{2} \phi\right)=0, \text { in } \Omega
$$

satisfying the boundary conditions

$$
\varphi=0, \quad \frac{\partial \varphi}{\partial n}=0 \quad \text { on } \quad \partial \Omega
$$

is $\phi=0$, where Ω is a bounded normal domain in \mathbb{R}^{3}.
4. Consider the Dirichlet problem

$$
\begin{gathered}
\nabla^{2} u(r, \theta)=0, \quad 0 \leq r \leq 1, \quad 0 \leq \theta \leq 2 \pi \\
u(1, \theta)=\frac{1}{1-\epsilon \cos \theta}
\end{gathered}
$$

where ϵ is a small parameter．Find an approximate solution $u_{\epsilon}(r, \theta)$ of the above problem which approximates the solution $u(r, \theta)$ in the disk to order ϵ^{3} ，i．e．

$$
\operatorname{Max}_{0 \leq r<1}^{0 \leq \theta \leq 2 \pi} ⿻ 上 丨 u_{\epsilon}\left|u(r, \theta)-u_{\epsilon}(r, \theta)\right| \leq C \epsilon^{3}
$$

where C is some constant．
5．Let Ω be the solid hemisphere $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}<a^{2}, x_{3}>0$ and $\delta \Omega$ its boundary．Find the Green＇s function $G\left(\mathbf{r}^{\prime}, \mathbf{r}\right)$ for Laplace equations in Ω satisfying the Dirichlet boundary condition on $\delta \Omega$ ．
6 ．Let $\psi(s)$ be the function defined for $s \geq 0$ by

$$
\psi(s)= \begin{cases}1 & \text { for } 0 \leq s \leq 1 \\ 0 & \text { for } s>1\end{cases}
$$

Using Kirchoff＇s formula，derive equation

$$
u(\mathbf{r})=\frac{1-(t-r)^{2}}{4 r} \psi(|t-r|), \quad r>1
$$

for the solution of the initial value problem，

$$
\begin{gathered}
\Delta u=u_{t t}, \quad \mathbf{r} \in \mathbb{R}^{3}, \quad t>0 \\
u(\mathbf{r}, 0)=0, \quad \mathbf{r} \in \mathbb{R}^{3} \\
u_{t}(\mathbf{r}, 0)=\psi(r), \quad \mathbf{r} \in \mathbb{R}^{3}
\end{gathered}
$$

7．Using the solution

$$
u(x, t)= \begin{cases}\frac{1}{2 \sqrt{\pi}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{t}} \exp \left\{-\frac{(x-\xi)^{2}}{4 t}\right\} \varphi(\xi) d \xi, & t>0 \\ \varphi(x), & t>0\end{cases}
$$

to the heat conduction problem for an infinite rod，find the solution to the system
（i）$u_{t}-u_{x x}=0, \quad 0<x<\infty, \quad 0<t$
（ii）$u(0, t)=u_{0}, \quad 0<t$
（iii）$u(x, 0)=0, \quad 0<x<\infty$
where u_{0} is a constant．
8．Find the energy at time $t=10$ ，for the system

$$
\begin{gathered}
u_{t t}-\nabla^{2} u=0 \quad x \in \Omega, \quad t>0 \\
u(x, 0)=1-\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right), u_{t}(x, 0)=2, \quad x \in \Omega \\
u(x, t)=0, \quad x \in \delta \Omega, \quad t>0
\end{gathered}
$$

where Ω is the unit ball in \mathbb{R}^{3} ．

