QUALIFYING EXAMINATION
 JANUARY 1995
 MATH 523

1. Consider the initial value problem

$$
\begin{gathered}
\left(1-z^{3}\right) z_{x}+z_{y}=0 \\
z(x, 0)=f(x)
\end{gathered}
$$

where $f \in C^{1}(\mathbb{R})$.
(a) Write down the equation that implicitly defines the solution z near the x-axis.
(b) iFrom your equation in (a), find formulas for z_{x} and z_{y} and verify that the PDE is satisfied.
(c) If $f(x)=-x^{3}$, decide whether or not shocks ever develop for $y \geq 0$, and justify your answer.
2. Let C be the parabola $y=x^{2}$ and consider the initial value problem

$$
\begin{gathered}
x^{2} u_{x}-y^{2} u_{y}+\cos (x-y) u=e^{x y} \\
\left.u\right|_{C}=\varphi
\end{gathered}
$$

where φ is a given continuous function defined on C. Prove that this problem has a unique solution in a neighborhood of the point $(1,1)$.
3. (a) State carefully the maximum principle for harmonic functions.
(b) Let Ω be the upper-half of the unit ball in \mathbb{R}^{3}

$$
\Omega=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}<1, \quad z>0\right\}
$$

and let $u=1 / r$ where $r=\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}$. Show by direct computation that u is harmonic in Ω.
(c) Does u attain its maximum value in Ω ? Does your answer contradict the maximum principle? Explain.
4. Let Ω be a domain in \mathbb{R}^{3}
(a) Define carefully the Green's function $G\left(\vec{r}^{\prime}, \vec{r}\right)$ for the Dirichlet problem for Ω.
(b) Write down the formula for the solution of the Dirichlet problem

$$
\begin{aligned}
\triangle u=0 & \text { in } \quad \Omega \\
u=f & \text { on } \quad \partial \Omega
\end{aligned}
$$

in terms of the Green's function.
(c) Prove that $G\left(\vec{r}^{\prime}, \vec{r}\right) \geq 0$ for all $\bar{r}^{\prime}, \vec{r} \in \Omega, \vec{r}^{\prime} \neq \vec{r}$.
5. Consider the initial value problem for the wave equation in three space variables:

$$
\begin{aligned}
u_{x_{1} x_{1}}+u_{x_{2} x_{2}}+u_{x_{3} x_{3}}-u_{t t}=0 ; & x \in \mathbb{R}^{3}, t>0 \\
u(x, 0)=\varphi(x) ; & x \in \mathbb{R}^{3} \\
u_{t}(x, 0)=\psi(x) ; & x \in \mathbb{R}^{3}
\end{aligned}
$$

(a) Write down the formula for the solution $u(x, t)$ of the problem.
(b) If φ and ψ vanish outside a ball of radius 3 centered at the origin, find the set of points in \mathbb{R}^{3} where you are sure that u vanishes when $t=10$.
(c) If φ vanishes everywhere in \mathbb{R}^{3}, and

$$
\psi(x)=\left\{\begin{array}{lll}
0 & \text { for } & |x|<1 \\
k & \text { for } & 1 \leq|x| \leq 2 \\
0 & \text { for } & 2<|x|
\end{array}\right.
$$

where k is a constant, find $u(0, t)$ for all $t \geq 0$. (Your answer should be explicit, no integrals).
6. Let Ω be a bounded domain in \mathbb{R}^{2} with smooth boundary $\partial \Omega$, and let \vec{n} be the exterior unit normal on $\partial \Omega$
(a) Suppose that $u\left(x_{1}, x_{2}, t\right)$ is of class C^{2} in the closed half-cylinder

$$
\left(x_{1}, x_{2}\right) \in \bar{\Omega}, \quad t \geq 0
$$

and that u satisfies the heat equation

$$
u_{t}-u_{x_{1} x_{1}}-u_{x_{2} x_{2}}=0 ; \quad\left(x_{1}, x_{2}\right) \in \Omega, \quad t>0
$$

and the boundary condition

$$
\frac{\partial u}{\partial n}\left(x_{1}, x_{2}, t\right)=-u\left(x_{1}, x_{2}, t\right) ;\left(x_{1}, x_{2}\right) \in \partial \Omega, \quad t \geq 0
$$

Show that for any $T \geq 0$

$$
\int_{\Omega} u^{2}\left(x_{1}, x_{2}, T\right) d x_{1} d x_{2} \leq \int_{\Omega} u^{2}\left(x_{1}, x_{2}, 0\right) d x_{1} d x_{2}
$$

(b) Consider the initial-boundary value problem

$$
\begin{gathered}
u_{t}-u_{x_{1} x_{1}}-u_{x_{2} x_{2}}=0 ; \quad\left(x_{1}, x_{2}\right) \in \Omega, \quad t>0 \\
\frac{\partial u}{\partial n}\left(x_{1}, x_{2}, t\right)=-u\left(x_{1}, x_{2}, t\right) ; \quad\left(x_{1}, x_{2}\right) \in \partial \Omega, \quad t \geq 0 \\
u\left(x_{1}, x_{2}, 0\right)=\varphi\left(x_{1}, x_{2}\right) ; \quad\left(x_{1}, x_{2}\right) \in \Omega
\end{gathered}
$$

Prove uniqueness of solution of this problem in the class of functions which are C^{2} in the closed half-cylinder $\left(x_{1}, x_{2}\right) \in \bar{\Omega}, \quad t \geq 0$.
7. For each of the PDEs below give an explicit example of a solution which is in $C^{2}\left(\mathbb{R}^{2}\right)$ but not in $C^{3}\left(\mathbb{R}^{2}\right)$, if such a solution exists.
(a) $u_{x x}+u_{y y}=0$
(b) $u_{x x}-u_{y y}=0$
(c) $u_{x x}-u_{y}=0$.

