MA 519 Fall 2020
 Qualifier

- You can use a calculator.
- This test is closed book and closed notes.
- You have 120 minutes.
- All problems have equal weight [10 points for each].
- Show your work.
- In order to get full credits, you need to give correct and simplified answers and explain in a comprehensible way how you arrive at them.
- Covid precaution: if you have questions about the exam, write them on a separate piece of paper and leave it on a dedicated table.
- Good luck!

Name:

Problem 1. A group of individuals containing b boys and g girls is lined up in random order; that is, each of the $(b+g)$! permutations is assumed to be equally likely. What is the probability that the person in the i th position, namely $1, \ldots, i, \ldots, b+g$, is a girl? Be sure to define the sample space S corresponding to this experiment, as well as the probability \mathbf{P} you are using on this sample space. Also include a mathematical description of the event you are considering as a subset of S.

Problem 2. Suppose we have 10 coins such that if the ith coin is flipped, heads will appear with probability $i / 10$, for $i=1,2, \ldots, 10$. When one of the coins is randomly selected and flipped, it shows heads. What is the conditional probability that it was the fifth coin?

Problem 3. A restaurant can serve 75 meals for lunch. In practice, 20% of the reservations are canceled without further notice. (a) Model the situation, introducing a proper probability space and a family of random variables. (b) What is the maximal number of reservations which can be accepted in order to have a 90% chance to serve all incoming customers?

Problem 4. Let U and V be two independent real valued random variables, with respective densities f and g. (a) Show that the density of $Z=U+V$ is $f \star g$, where $f \star g(x)=\int_{\mathbb{R}} f(x-t) g(t) d t$. (b) Let T_{1}, \ldots, T_{n} be exponential random variables with parameter λ. Using question (a), compute the density of $S_{n}=T_{1}+\cdots+T_{n}$.

Problem 5. (a) Let Y be a real valued continuous random variable. Prove that

$$
\mathbf{E}[Y]=\int_{0}^{\infty} \mathbf{P}(Y>y) d y-\int_{0}^{\infty} \mathbf{P}(Y<-y) d y
$$

(b) For a non negative continuous random variable, variable prove that

$$
\mathbf{E}\left[X^{n}\right]=n \int_{0}^{\infty} x^{n-1} \mathbf{P}(X>x) d x
$$

Problem 6. (a) Let Z be a standard normal variable. Show that $Y=Z^{2}$ follows $\operatorname{Gamma}\left(\frac{1}{2}, \frac{1}{2}\right)$.
(b) Consider X, Y respectively distributed as $\operatorname{Gamma}(\alpha, \lambda)$ and $\operatorname{Gamma}(\beta, \lambda)$. Assume X and Y are independent. Show that $X+Y$ follows $\operatorname{Gamma}(\alpha+\beta, \lambda)$.
(c) Let $\left\{X_{i}: i=1, \ldots, n\right\}$ be i.i.d standard Normal random variables. Using the above questions (a) and (b), show that $Y=\sum_{i=1}^{n} X_{i}^{2}$ follows a χ^{2} distribution with degree of freedom n.

Values of $\Phi(x)$ for some $x \geq 0$

9866 ${ }^{\circ}$	†E66	ZE66	IE66 ${ }^{\circ}$	6266 ${ }^{\circ}$	L266	S766	Z266	0266 ${ }^{\circ}$	8L66	ガて
9166＊	EL66	L166	$6066{ }^{\circ}$	$9066{ }^{\circ}$	†066	L066	8686	$9686{ }^{\circ}$	E686	どて
0686 ${ }^{\circ}$	L886	¢886 ${ }^{\circ}$	L886 ${ }^{\circ}$	8L86＊	S 2866°	IL86 ${ }^{\circ}$	$8986{ }^{\circ}$	†986 ${ }^{\circ}$	L986	でて
LS86 ${ }^{\circ}$	${ }^{\circ} 886^{\circ}$	$0586{ }^{\circ}$	9786	で86 ${ }^{\circ}$	8E86＊	七E86	0ع86	$9786{ }^{\circ}$	LZ86	［＇乙
LI86 ${ }^{\circ}$	てL86	$8086{ }^{\circ}$	E086	86L6	E6L6 ${ }^{\circ}$	88L6 ${ }^{\circ}$	E8L6	8LL6 ${ }^{\circ}$	ZLL6 ${ }^{\circ}$	$0{ }^{\circ}$
L9L6 ${ }^{\circ}$	［946	9SL6	OSL6	カナL6	8EL6＊	ZEL6	9ZL6	6IL6 ${ }^{\circ}$	ELL6	$6{ }^{\circ}$
90L6	$6696{ }^{\circ}$	E696＊	$9896{ }^{\circ}$	8L96＊	IL96＊	†996＊	9¢96＊	6 ± 96	切96＊	$8{ }^{\prime}$
E\＆96＊	S296＊	9196＊	$8096{ }^{\circ}$	6656	I6S6	Z856 ${ }^{\circ}$	ELS6＊	t956 ${ }^{\circ}$	ャSS6＊	$L \cdot$
StS6＊	SES6＊	S2S6	SIS6	SOS6	S6t6	七8ャ6＊	ヤLヤ6＊	ع9t6 ${ }^{\circ}$	ZSt6＊	$9{ }^{\prime}$
Itt6	62t6＊	8Lt6＊	90t6＊	カ6E6＊	Z8E6	0LE6	LSE6	SカE6	Z\＆E6	$S^{\prime \prime}$
6IE6	90E6＊	Z6Z6	6LZ6＊	S976	LS76 ${ }^{\circ}$	9とZ6＊	てZZ6＊	L0Z6 ${ }^{\text {a }}$	Z6I6＊	∇^{\prime}
LLI6＊	2916	LヵI6＊	IEL6＊	SLI6＊	$6606{ }^{\circ}$	Z806	9906	6706	ZE06	$\varepsilon \cdot L$
SL06	L668	$0868{ }^{\circ}$	Z968＊	カt68	S268	L068	$8888{ }^{\circ}$	$6988{ }^{\circ}$	6788°	でI
0¢88 ${ }^{\circ}$	0188＊	06L8 ${ }^{\circ}$	0LL8	6tL8	62L8	80L8 ${ }^{\circ}$	$9898{ }^{\circ}$	S998＊	Eャ98	I＇I
IZ98＊	6658	LLS8 ${ }^{\circ}$	tSS8＊	LES8＊	8058＊	S8t8 ${ }^{\text {® }}$	［978＊	8\＆ 8°	ELt8＊	$0^{\circ} \mathrm{I}$
68E8＊	S9E8＊	0tE8	SIE8＊	6828＊	t978	8とZ8＊	てIZ8＊	9818＊	6SI8＊	$6{ }^{\circ}$
\＆とI8＊	9018＊	8L08	LS08＊	£Z08＊	S66L	L964＊	6E6 L°	016 ${ }^{\circ}$	L88 L°	$8 \cdot$
ZS8 ${ }^{\circ}$	E28 L°	カ6LL＇	t9LL＊	カELL＊	七0LL＇	EL9 ${ }^{\circ}$	てヶ9 ${ }^{\circ}$	L99 ${ }^{\circ}$	08S L°	L°
$6 \pm$ ¢ L°	LISL	98t L°	七Sャレ＊	てZャレ＊	68EL＇	LSEL＇	七てEL＊	L6ZL	LSZL＇	9
七てZじ	06IL	LSIL＊	EZIL＊	880 ${ }^{\circ}$	\dagger ¢ $0 L^{\circ}$	610 ${ }^{\circ}$	S869	0S69＊＊	SI69	S°
6L89＊	カャ89	8089	ZLL9	9EL9 ${ }^{\circ}$	00L9	ャ999	$8799{ }^{\circ}$	I659	†SS9	∇^{*}
LIS9＊	08t9 ${ }^{\circ}$	どt9＊	90t9＊	89E9＊	IE\＆9＊	E6Z9＊	SSZ9＊	LIZ9＊	6LI9	$\varepsilon \cdot$
ItI9＊	E0L9＊	†909＊	9209＊	L86S ${ }^{\circ}$	8ヵ6 ${ }^{\circ}$	016S＊	IL8S＇	てE85＊	E6LS	て＇
ESLS	ャILS＊	SL9 ${ }^{\circ}$	9E9S＊	96S5＊	LSSS	LISS	8LtS＇	$8 \varepsilon \dagger ¢^{*}$	86ES	［
6SES＇	6IES	6LZS＇	6EZS＇	66IS	09IS＇	OZIS＊	080 ${ }^{\circ}$	0t0 ${ }^{\circ}$	000 ${ }^{\circ}$	0
60°	80°	$\angle 0^{\circ}$	90°	S0 ${ }^{\circ}$	t0	$\varepsilon 0^{\circ}$	20°	［0＊	00°	X

