
MA 519: Introduction to Probability Theory

Qualifying Examination – January 2019

Your PUID: Scores: (1) (2) (3) (4) (5) (Total)

This examination consists of five questions, 20 points each, totaling 100 points. In order to get full

credits, you need to give correct and simplified answers and explain in a comprehensible way

how you arrive at them.

1. Suppose the number N of customers entering into a bank is given by a Poisson random

variable with parameter λ. Each customer decides independently with probability p of going

to teller number one and with probability q = 1−p of going to teller number two. Let X and

Y be the number of customers going to teller number one and two, respectively.

(a) Find the distributions of X and Y : P (X = i) and P (Y = j).

(b) Find the joint distribution of X and Y : P (X = i, Y = j).

(c) Are X and Y independent?

(d) Find the conditional distribution of X given N : P (X = i|N = n).

(e) Find the conditional distribution of N given X: P (N = n|X = i).
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2. Let X and Y be two independent geometric random variables with parameter p.

(a) Find the probability distribution function of min(X,Y ): P (min(X,Y ) = i).

(b) Find the probability distribution function of X + Y ; P (X + Y = i).

(c) Find the conditional distribition of X given X + Y : P (X = i
∣∣∣X + Y = j).
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3. Suppose at any time t the number of passengers arriving at a train station during the time

interval (0, t) is a Poisson random variable with parameter λt (i.e. λ can be interpreted as

the “rate of arrival”). Suppose also that the arrival time of the train is uniformly distributed

over (0, T ). Let the arrivals of the passengers and the train be independent of each other.

Find the mean and variance of the number of passengers that can board the train.
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4. Let X be a standard normal random variable. Construct a random variable Y in the following

way: toss a fair coin (which is independent of X) and set

Y =

{
X if the toss gives a head,

−X if the toss gives a tail.

In other words, Y is equally likely to equal to either X or −X.

(a) Find the pdf of Y and relate it to some common distribution.

(b) Find E(XY ), i.e the correlation between X and Y .

(c) Are X and Y independent?
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5. This question concerns finding the pdf of the quotient between random variables.

(a) Let the joint pdf of two continuous positive random variables X and Y be given by

p(x, y), for x, y ≥ 0. Define Z = Y
X . Show that the pdf pZ(·) of Z is given by

pZ(z) =

∫ ∞
0

xp(x, zx) dx

(Hint: differentiate the cdf of Z.)

(b) Recall that Gamma distribution Gamma(α, λ) with parameter (α, λ) is given by

pα,λ(x) =
1

Γ(α)
λ(λx)α−1e−λx for x > 0.

Let X and Y be two independent random variables distributed as Gamma(α, λ) and

Gamma(β, µ). Find the pdf of Z = Y
X . You do need to carry out all the integration to

give a closed-form analytical expression.
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