QUALIFYING EXAM COVER SHEET

August 2017 Qualifying Exams

Instructions: These exams will be "blind-graded" so under the student ID number please use your PUID

ID #: _______(10 digit PUID)

(519) 523 530 544 553 554 562 571 EXAM (circle one)

For grader use:

 Points
 / Max Possible
 Grade

MA 519 Qualifying Exam

Name:_____

- a) Legibly print your name above.
- b) Do not open this test booklet until you are directed to do so.
- c) You will have 120 min. to complete the exam. Budget your time wisely!
- d) This test is closed book and closed notes. You may not use a calculator during this test.
- e) Throughout the test, **show your work so that your reasoning is clear**. Otherwise no credit will be given.
- f) If you need extra room, use the back of the pages. Just make sure I can follow your work.

1. Let $Z \sim \text{Exp}(\lambda)$.

- a) Compute the distribution of $X = \lfloor Z \rfloor$, and compute E[X].
- b) Compute the p.d.f. of $Y = Z \lfloor Z \rfloor$, and compute E[Y].

2. Suppose that $X \ge 1$ is a Geometric random variable with parameter $p \in (0, 1)$. That is,

$$P(X = k) = p(1 - p)^{k-1}, \quad \text{for } k \ge 1.$$

- a) For any integer $m \ge 1$, compute the probability that X is a multiple of m.
- b) Compute the probability that X is not divisible by any of the first three prime numbers (i.e., X is relatively prime to 2, 3 and 5).

- **3.** Compute E[|X| + |Y|] in each of the following cases.
 - a) When (X, Y) are uniformly distributed on the unit circle $S^1 = \{(x, y) : x^2 + y^2 = 1\}$. (Note: S^1 is NOT the unit disc)
 - b) When X and Y are independent standard normal random variables.

4. Recall that a permutation of *n* elements is a bijective function $\pi : \{1, 2, ..., n\} \rightarrow \{1, 2, ..., n\}$. The *descent* number of a permutation is

$$des(\pi) = \#\{2 \le i \le n : \pi(i) < \pi(i-1)\}.$$

Example: if n = 5 and π is the permutation given by

n	1	2	3	4	5
$\pi(n)$	2	1	5	3	4

then $des(\pi) = 2$.

Suppose that a permutation π of n elements is chosen uniformly at random from the n! possible permutations, and $N = \operatorname{des}(\pi)$ is the descent number of π .

- a) Compute P(N > 0).
- b) Compute E[N].
- c) Compute Var(N).

- **5.** Recall that if $X \sim \text{Poisson}(\lambda)$ for some $\lambda > 0$, then $P(X = k) = e^{-\lambda \frac{\lambda^k}{k!}}$ for $k \ge 0$.
 - a) Prove that if $X \sim \text{Poisson}(\lambda)$, $Y \sim \text{Poisson}(\mu)$, and X and Y are independent, then $X + Y \sim \text{Poisson}(\theta)$ and compute the parameter θ in terms of λ and μ .
 - b) Use part a) and the law of large numbers to prove that

$$\lim_{n \to \infty} \sum_{k=0}^{\lfloor nt \rfloor} e^{-n} \frac{n^k}{k!} = \begin{cases} 0 & \text{if } t < 1\\ 1 & \text{if } t > 1. \end{cases}$$

c) Prove that

$$\lim_{n \to \infty} \sum_{k=0}^{n} e^{-n} \frac{n^k}{k!} = \frac{1}{2}.$$