MA 519: Introduction to Probability Theory
 August 2016, Qualifying Examination

Your PUID:

This examination consists of five questions, 20 points each, totaling 100 points. In order to get full credits, you need to give correct and simplified answers and explain in a comprehensible way how you arrive at them.

1. 8 balls are randomly distributed into 4 boxes. Each ball is distributed independently from each other and uniformly among the 4 boxes.
(a) What is the expected number of balls in a given box?
(b) Let N be the number of empty boxes. Compute $E[N]$ and $\operatorname{Var}(N)$. (Hint: use some appropriate indicator functions.)
(c) What is the probability that there is at least one ball in every box. (Hint: use inclusion-exclusion principle.)

This is a blank page.

This is a blank page.
2. Suppose that $0 \leq X \leq N$ are integer-valued random variables with the following joint distribution. For $\lambda>0$ and $p \in(0,1)$ fixed parameters,

- the marginal distribution of N is $\operatorname{Poisson}(\lambda)$,
- the conditional distribution of X given $N=n$ is $\operatorname{Binomial}(n, p)$, i.e.

$$
P(X=k \mid N=n)=\binom{n}{k} p^{k}(1-p)^{n-k}, \text { for } k=0,1,2, \ldots, n
$$

(a) Compute the marginal distribution of X, i.e., compute $P(X=k)$ for $k \geq 0$.
(b) Compute the conditional distribution of N given $X=k$, i.e. compute $P(N=n \mid X=k)$.
(c) Compute the conditional mean N given $X=k$, i.e. compute $E[N \mid X=k]$.

Hint: The conditional distribution calculated in part (b) is related to one of the standard probability distributions for which the mean and variance are well known.

This is a blank page.

This is a blank page.
3. Prove the following identities.
(a) If Z is a real-valued random variable with p.d.f. $f(z)$ and c.d.f. $F(t)=\int_{-\infty}^{t} f(z) d z$, then

$$
E[Z]=\int_{0}^{\infty}(1-F(t)) d t-\int_{-\infty}^{0} F(t) d t
$$

whenever both integrals on the right are finite.
(b) If X is a non-negative, integer-valued random variable, then

$$
E[X(X+1)]=\sum_{n=1}^{\infty} 2 n P(X \geq n)
$$

This is a blank page.

This is a blank page.
4. Consider X_{λ} to be a Poisson random variable with parameter λ.
(a) Compute the moment generating function of X_{λ}, i.e., $M(s)=E e^{s X_{\lambda}}$.
(b) Show that $\frac{X_{\lambda}-\lambda}{\sqrt{\lambda}} \Longrightarrow_{\mathcal{D}} N(0,1)$ as $\lambda \longrightarrow+\infty$.

Hint: recall the relationship between moment generating function and convergence in distribution.
(c) Part (b) essentially says that for n large, $\frac{X_{n}-n}{\sqrt{n}}$ approximately has the distribution of the standard normal random variable. Relate this to the statement of the classical Central Limit Theorem.

This is a blank page.

This is a blank page.
5. (Estimation of the length of an interval.) Let $L>0$ be some unknown but fixed length. Let X_{1}, X_{2}, \ldots be a sequence of iid random variables uniformly distributed on $[0, L]$. The goal is to use the X_{i} 's to estimate L.
(a) Let $A_{n}=2 \frac{X_{1}+\cdots+X_{n}}{n}$. Show that A_{n} is an unbiased estimator in the sense that $\mathrm{E}\left(A_{n}\right)=L$.
(b) Let $B_{n}=\gamma_{n} \max \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ where γ_{n} is some number. Find the correct value of γ_{n} such that B_{n} is also an unbiased estimator, i.e. $\mathrm{E}\left(B_{n}\right)=L$.
(Hint: find the distribution of B_{n} first.)
(c) Find $\operatorname{Var}\left(A_{n}\right)$ and $\operatorname{Var}\left(B_{n}\right)$.
(d) Which estimator is "more superior"? Explain.

This is a blank page.

This is a blank page.

