MA 519: Introduction to Probability Theory

August 2015, Qualifying Examination (Yip)

Your PUID:

This examination contains six questions, totaling 120 points. In order to get full credits, you need to give correct and simplified answers and explain in a comprehensible way how you arrive at them.

1. There are two types $(i=1,2)$ of batteries in a bin. The life span of type i is an exponential random variable which parameter λ_{i}. The probability of type i battery to be chosen is p_{i} $\left(p_{1}+p_{2}=1\right)$.

Suppose a randomly chosen battery is operating at time t hours, what is the probability that it will still be operating after an additional s hours?

This is a blank page.
2. Suppose n balls are distributed in n boxes in such a way that each ball chooses a box independently of each other.
(a) What is the probability that Box \#1 is empty?
(b) What is the probability that only Box \#1 is empty?
(c) What is the probability that only one box is empty?
(d) Given that Box \#1 is empty, what is the probability that only one box is empty?
(e) Given that only one box is empty, what is the probability that Box \#1 is empty?

This is a blank page.
3. Let X and Y be two positive continuous random variables having joint density $f(x, y)$.
(a) Let $W=\frac{Y}{X}$ and $Z=X+Y$. Find the joint density of W and Z in terms of f.
(b) Now suppose X and Y are two independent Gamma random variables with densities $\Gamma\left(\alpha_{1}, \lambda\right)$ and $\Gamma\left(\alpha_{2}, \lambda\right)$ respectively. Are W and Z (defined in (a)) independent?
(Note: The density p of $\Gamma(\alpha, \lambda)$ is given by $p(t)=\frac{\lambda^{\alpha} t^{\alpha-1} e^{-\lambda t}}{\Gamma(\alpha)}$.)

This is a blank page.
4. Let $X_{1}, X_{2}, \ldots X_{n}$ be independent, identically distributed random variables having mean 0 and variance σ^{2}. Let $S_{n}=X_{1}+X_{2}+\cdots X_{n}$.
(a) Suppose X_{1} has finite third moment. Show that $E\left(S_{n}^{3}\right)=n E\left(X_{1}^{3}\right)$ and hence find the value of

$$
\lim _{n \rightarrow \infty} E\left[\left(\frac{S_{n}}{\sigma \sqrt{n}}\right)^{3}\right]
$$

(b) Suppose X_{1} has finite fourth moment. Show that $E\left(S_{n}^{4}\right)=n E\left(X_{1}^{4}\right)+3 n(n-1) \sigma^{4}$ and hence find the value of

$$
\lim _{n \rightarrow \infty} E\left[\left(\frac{S_{n}}{\sigma \sqrt{n}}\right)^{4}\right]
$$

This is a blank page.
5. Let $X_{1}, X_{2}, \ldots X_{n}$ be n independent random variables with uniform distribution over $[0,1]$. Let $Y=\min \left\{X_{1}, X_{2}, \ldots X_{n}\right\}$ and $Z=\max \left\{X_{1}, X_{2}, \ldots X_{n}\right\}$.
(a) Find the pdf of Y.
(b) Find the pdf of Z.
(c) Find the joint pdf of Y and Z.
(d) Find $\mathrm{E}(Z-Y)$.
(e) Find $\operatorname{Var}(Z-Y)$.
(A useful integration identity: $\int_{0}^{1} x^{m}(1-x)^{n} d x=\frac{m!n!}{(m+n+1)!}$.)

This is a blank page.

This is a blank page.
6. Let X be a standard normal Gaussian random variable (the mean zero and variance one). Let $a, b>0$ such that $a-b>0$ and $\epsilon>0$. Prove the following two statements:
(a) $\lim _{\epsilon \rightarrow 0} P(|\epsilon X-a|<b)=0$.
(b) $\lim _{\epsilon \rightarrow 0} \epsilon^{2} \log P(|\epsilon X-a|<b)=-\frac{(a-b)^{2}}{2}$.
(Note and hint. (b) improves (a) by giving a convergence rate. Try L'Hospital Rule for (b).)

This is a blank page.

This is a blank page.

