MATHEMATICS QUALIFYING EXAMINATION JANUARY 2007 MATH 519 - Prof. Sellke

Each problem is worth 20 points.

- 1. Twelve dots are arranged in four rows, with three dots in each row. Randomly choose four of the twelve dots. Let N be the number of rows with no chosen dot. Find the mean and variance of N.
- 2. Let X_1 and X_2 be random variables with joint density

$$f_X(x_1, x_2) = \begin{cases} 3x_1 & \text{if } 0 < x_2 < x_1 < 1 \\ 0 & \text{else} \end{cases}$$

Let $Y_1 = \frac{1}{X_1}$ and $Y_2 = \frac{1}{X_2}$. Find the joint density $f_Y(y_1, y_2)$ of Y_1 and Y_2 .

3. Suppose that a solution now contains a single living bacterium. This organism has the property that, after 24 hours, it will give rise to a random number N_1 of descendants with a Geometric(p) "number of failures" distribution:

$$P\{N_1 = k\} = q^k p, \quad k = 0, 1, 2, \dots$$

with $p \in (0,1)$ and q = 1 - p and $EN_1 = \frac{q}{p}$. (So, N_1 is the population size after 24 hours.) Furthermore, each bacterium present in 24 hours will give rise *after* another 24 hours to a random number of descendants with the same Geometric(p) "number of failures" distribution, with different bacteria having independent numbers of descendants.

Let N_2 be the population size 48 hours from now. Find $E(N_1|N_2=0)$.

(Hint: The maximum value of this quantity as p varies between 0 and 1 is $\frac{1}{2}$.)

- 4. Let X and Y be independent standard normal (i.e., N(0,1)) random variables. Find $P\{3X^2 < Y^2\}$.
- 5. Let U_1, U_2, \ldots, U_n be iid U[0, 1] random variables, with order statistics

$$0 \le U_{(1)} \le U_{(2)} \le \cdots U_{(n)} \le 1.$$

For k = 1, 2, ..., n + 1, let $G_k = U_{(k)} - U_{(k-1)}$ be the length of the k^{th} "gap" (where we set $U_{(0)} = 0$ and $U_{(n+1)} = 1$). Let

$$L_n = \max\{G_k, \quad 1 \le k \le n+1\}$$

be the length of the *largest* gap.

When $n = 10^{43}$, the median of the random variable L_n is approximately an integer power of $\frac{1}{10}$, so that

$$median(L_{10^{43}}) \approx 10^{-j}$$

for some integer j.

Find j, and justify your answer. (Heuristic reasoning is fine.)