QUALIFYING EXAMINATION

JANUARY 2002
MATH 519 - Prof. Davis

20 points/problem

1. Let $N_{1}, N_{2}, \ldots, N_{100}$ be iid (independent and identically distributed) normal mean 0 and variance 1 variables. Let $X_{1}, X_{2}, \ldots, X_{100}$ be iid variables with distribution $P\left(X_{i}=-1\right)=P\left(X_{i}=+1\right)=\frac{1}{2}$, and let the X_{i} also be independent of the normal variables. Find $P\left(\sum_{i-1}^{100} X_{i} N_{i}>5\right)$. Leave your answer as an integral.
2. The arrival times $\tau_{1}<\tau_{2}<\cdots$ of a Poisson process (with rate $\lambda=1$) are rounded down to the nearest tenth. Let $s_{1} \leq s_{2} \leq \cdots$ be the numbers this rounding produces. Put $N=\inf \left\{i: s_{i}\right.$ is an integer $\}$. (So for example if $\tau_{1}=1.86$ and $\tau_{2}=3.09$, then $s_{1}=1.8, s_{2}=3, N=2$, and $s_{N}=3$.)
(a) Find $P\left(s_{N}=7\right)$.
(b) Find $E \tau_{N}$.
3. Let $\mathbf{X}=\left(X_{1}, X_{2}\right)$ be uniform in the unit square $\{0 \leq x \leq 1,0 \leq y \leq 1\}$ and let $\mathbf{Z}=\left(Z_{1}, Z_{2}\right)$ be independent of \mathbf{X} and have the same distribution. Give the joint density of $\mathbf{X}+\mathbf{Z}$.
4. A fair coin is tossed 100 times and then tossed again as many times as tails were obtained in the first 100 tosses. Let X be the total heads tossed. Find the mean and variance of X in as simplified a form as possible (decimal form is best).
5. (a) Find the density of the median of three independent uniform $(0,1)$ variables.
(b) Is there a density g such that if X_{1}, X_{2}, X_{3} are independent and have density g then the median of the X_{i} has a uniform $(0,1)$ distribution?
