QUALIFYING EXAMINATION
 AUGUST 2000
 MATH 519 - Prof. Studden

All problems have the same point value.

1. The annual number of accidents for an individual driver has a Poisson distribution with mean λ. The Poisson means λ, of a heterogeneous population of drivers, have a gamma distribution with mean 0.1 and variance 0.01 . Calculate the probability that a driver, selected at random from the population, will have 2 or more accidents in one year. The gamma density is given by

$$
f(x)=\frac{1}{\theta}\left(\frac{x}{\theta}\right)^{\alpha-1} \frac{e^{-\frac{x}{\theta}}}{\Gamma(\alpha)}
$$

2. Let X_{n} be any sequence of random variable such that $\operatorname{Var}\left(X_{n}\right) \leq c \mu_{n}$ for some fixed constant c and $\mu_{n}=E X_{n} \longrightarrow \infty$. Show that $\lim _{n \longrightarrow \infty} P\left(X_{n}>a\right)=1$ for all a.
3. For any random variable X and Y determine whether the following are true or false;
a) X and $\mathrm{Y}-\mathrm{E}(\mathrm{Y} \mid \mathrm{X})$ are uncorrelated,
b) $\operatorname{Var}(\mathrm{Y}-\mathrm{E}(\mathrm{Y} \mid \mathrm{X}))=\mathrm{E}(\operatorname{Var}(\mathrm{Y} \mid \mathrm{X}))$,
c) $\operatorname{Cov}(\mathrm{X}, \mathrm{E}(\mathrm{Y} \mid \mathrm{X}))=\operatorname{Cov}(\mathrm{X}, \mathrm{Y})$.
4. An urn contains W white and B black balls. Balls are randomly selected without replacement from the urn until w white balls have been removed. $(1 \leq w \leq W)$.
a) If X is the number of black balls that are selected, what is $\mathrm{P}(\mathrm{X}=\mathrm{k}) ?(k=0,1, \cdots, B)$.
b) What is $\mathrm{E}(\mathrm{X})$?
5. Let $S_{n}=X_{1}+\cdots+X_{n}$ where the X_{i} are independent and uniformly distributed on $(0,1)$.
a) What is the moment generating function of S_{n} ?
b) Show that $f_{n}(x)=F_{n-1}(x)-F_{n-1}(x-1)$ where f_{k} and F_{k} are the density and distribution function of S_{k} respectively.
c) Show by induction that

$$
f_{n}(x)=\frac{1}{(n-1)!} \sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(x-k)_{+}^{n-1}
$$

d) Obtain the moment generating function of S_{n} directly from the density in part c .
6. Let X_{1}, \cdots, X_{n} be independent random variables with common distribution which is uniform on the interval ($-1 / 2,1 / 2$). Show that the random variables

$$
Z_{n}=\sqrt{n} \frac{\sum_{i=1}^{n} X_{i}}{\sum_{i=1}^{n} X_{i}^{2}}
$$

converge in distribution to some random variable Z and identify the distribution of Z .
7. Let X_{1}, X_{2}, X_{3} be independent normal random variables with mean zero and variance one. What is the distribution of

$$
\frac{X_{1}+X_{2} X_{3}}{\sqrt{1+X_{3}^{2}}} ?
$$

