QUALIFYING EXAMINATION
 JANUARY 1999
 MATH 519 - Prof. DasGupta

4. Let $Z_{1}, Z_{2}, \cdots, Z_{n}$ be $n \operatorname{IID} N(0,1)$ variables. We now define

$$
\begin{aligned}
X_{i} & =Z_{i} \quad \text { if } \quad\left|Z_{i}\right|>1 \\
& =0 \quad \text { if } \quad\left|Z_{i}\right| \leq 1
\end{aligned}
$$

Consider now the random variable T_{n}

$$
T_{n}=\sum_{i=1}^{n} X_{i}
$$

Approximately calculate $P\left(T_{n}>10\right)$ when $n=50$.

1. A group of n people are lined up in a row at random. Let S denote a randomly selected nonempty subset of these n people, selected from the $2^{n}-1$ possible nonempty subsets of the full set of n people.

Find the probability that the members of S occupy consecutive positions in the line-up.
2. Suppose $X_{1}, X_{2}, \cdots, X_{k}$ are k IID Poisson random variables with mean 1 , and $n_{1}, n_{2}, \cdots, n_{k}$ are k nonnegative integers.
Characterize all k-tuples $\left(n_{1}, n_{2}, \cdots, n_{k}\right)$ such that $\sum_{i=1}^{k} n_{i} X_{i}$ has also a Poisson distribution.
3. Take two IID Uniform $[0,1]$ random variables X, Y.

Let $U=X+Y, V=X Y$.
Find an expression for $E(U \mid V=v)$.
5. A couple have agreed on having children until they have at least 2 boys and at least 2 girls. Assume that childbirths are mutually independent and that at each birth, a male or a female child are equally likely.

What is the most likely number of children this couple will have?

