Mathematics 519 Qualifying Exam August 1997

1. A standard deck of playing cards is divided into two stacks, one consisting of the 26 black cards (clubs \clubsuit and spades \spadesuit), and the other consisting of the 26 red cards (diamonds \diamondsuit and hearts \heartsuit). Each stack is thoroughly shuffled. You are then dealt 5 cards, two from the black stack, and three from the red stack. What is the probability that you are dealt at least one Ace?

2. Let Z, X_1, X_2, \ldots, X_5 be random variables such that (a) Z has the uniform distribution on the unit interval (0, 1); and (b) for any $z \in (0, 1)$, conditional on Z = z the random variables X_1, X_2, \ldots, X_5 are independent, identically distributed Bernoulli-z, i.e., for any sequence e_1, e_2, \ldots, e_n of zeros and ones,

$$P(X_i = e_i \ \forall \ 1 \le i \le n \ | \ Z = z) = \prod_{i=1}^5 z^{e_i} (1-z)^{1-e_i}.$$

Find $P\{\sum_{i=1}^{5} X_i = 4\}.$

3. A standard deck of playing cards is thoroughly shuffled. Cards are then dealt face up from the top of the deck, one at a time, until the first Ace appears. Let Y be the number of cards dealt. Calculate EY.

4. Suppose that the random variables Y, X_1, X_2, \ldots are independent, and that

$$P{Y = n} = 2^{-n}$$
 $\forall n = 1, 2, ...$
 $P{X_k \ge t} = e^{-\pi t}$ $\forall t > 0 \text{ and } k = 1, 2, ...$

Let $S_n = X_1 + X_2 + \dots + X_n$. Calculate $E(S_Y^3)$.

5. Let $\Theta_1, \Theta_2, \ldots$ be a sequence of independent, identically distributed random variables with the uniform distribution on the interval $(0, 2\pi)$. For $n = 1, 2, \ldots$ define

$$X_n = \sum_{k=1}^n \cos \Theta_k, \ Y_n = \sum_{k=1}^n \sin \Theta_k, \ \text{and} \ \ R_n^2 = X_n^2 + Y_n^2.$$

Prove that

$$\lim_{n\to\infty} P\{R_n^2\geq n\}$$

exists, and, if possible, evaluate it.