QUALIFYING EXAMINATION JANUARY 1996 MATH 519

- 1. Ten balls are thrown randomly into ten boxes. A box can hold any number of balls. Find the mean and variance of the number of empty boxes.
- 2. A fair six sided die is rolled repeatedly until the first six comes up. Let N_i be the number of times the side with *i* dots comes up, i = 1, 2, 3, 4, 5.
 - (a) Find the distribution of N_1 .
 - (b) Find the distribution of $N_1 + N_2 + N_3 + N_4 + N_5$.
 - (c) Are N_1 and $N_1 + N_2 + N_3 + N_4 + N_5$ independent. Why?
 - (d) Let Z be the number of those i = 1, 2, 3, 4, 5 such that $N_i > 0$. Find the distribution of Z.
- 3. Let X and Y be independent exponential $(\lambda = 1)$ variables, that is, they have probability density function $f(t) = e^{-t}$, t > 0. Let Z be independent of (X, Y), and suppose $P(Z = 1) = P(Z = -1) = \frac{1}{2}$.
 - (a) Find a function $\phi(x, y)$ such that $\phi(X, Y)$ has joint density g(x, y) = 1 if 0 < x < 1 and 0 < y < 1, g(x, y) = 0 elsewhere.
 - (b) Find the joint density of (ZX, ZY).
 - (c) Find the density of $\frac{X}{X+Y}$.
- 4. Let X and Y be independent and identically distributed random variables each with a continuous density f(t) which is zero if $t \notin [0, 1]$, and not zero if $t \in (0, 1)$.
 - (a) Find an integer n such that

$$\lim_{\varepsilon \to 0} \frac{1}{\varepsilon^n} P\left(\left| (X, Y) - \left(\frac{1}{2}, \frac{1}{2}\right) \right| \right) = \delta,$$

where $\delta \in (0, \infty)$ and |(a, b) - (c, d)| is the Euclidean distance between these points. Evaluate δ in terms of f.

(b) Find an integer n such that

$$\lim_{\varepsilon \to 0} \frac{1}{\varepsilon^n} P(|X - Y| < \varepsilon) = \delta,$$

where $\delta \in (0, \infty)$. For which f is this δ minimized?