QUALIFYING EXAMINATION

JANUARY 1996
MATH 519

1. Ten balls are thrown randomly into ten boxes. A box can hold any number of balls. Find the mean and variance of the number of empty boxes.
2. A fair six sided die is rolled repeatedly until the first six comes up. Let N_{i} be the number of times the side with i dots comes up, $i=1,2,3,4,5$.
(a) Find the distribution of N_{1}.
(b) Find the distribution of $N_{1}+N_{2}+N_{3}+N_{4}+N_{5}$.
(c) Are N_{1} and $N_{1}+N_{2}+N_{3}+N_{4}+N_{5}$ independent. Why?
(d) Let Z be the number of those $i=1,2,3,4,5$ such that $N_{i}>0$. Find the distribution of Z.
3. Let X and Y be independent exponential $(\lambda=1)$ variables, that is, they have probability density function $f(t)=e^{-t}, t>0$. Let Z be independent of (X, Y), and suppose $P(Z=1)=P(Z=-1)=\frac{1}{2}$.
(a) Find a function $\phi(x, y)$ such that $\phi(X, Y)$ has joint density $g(x, y)=1$ if $0<x<1$ and $0<y<1, g(x, y)=0$ elsewhere.
(b) Find the joint density of $(Z X, Z Y)$.
(c) Find the density of $\frac{X}{X+Y}$.
4. Let X and Y be independent and identically distributed random variables each with a continuous density $f(t)$ which is zero if $t \notin[0,1]$, and not zero if $t \in(0,1)$.
(a) Find an integer n such that

$$
\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon^{n}} P\left(\left|(X, Y)-\left(\frac{1}{2}, \frac{1}{2}\right)\right|\right)=\delta
$$

where $\delta \in(0, \infty)$ and $|(a, b)-(c, d)|$ is the Euclidean distance between these points. Evaluate δ in terms of f.
(b) Find an integer n such that

$$
\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon^{n}} P(|X-Y|<\varepsilon)=\delta
$$

where $\delta \in(0, \infty)$. For which f is this δ minimized?

