QUALIFYING EXAMINATION

JANUARY 10, 1994
MATH 519

1. (20 points) Let X_{1}, X_{2}, X_{3} and X_{4} be independent random variables, each uniformly distributed on the interval $(-1,1)$. Find
(a) $P\left(X_{1}<X_{2}<X_{3}<X_{4}\right)$
(b) $P\left(X_{1}^{2}<\left(X_{1}+X_{2}\right)^{2}\right)$
(c) $P\left(X_{1}^{2}>X_{2}^{2}+X_{3}^{2}\right)$
2. (20 points) A fair die is rolled repeatedly until it comes up ace. This procedure is repeated 100 times. Find
(a) the probability that exactly four threes are rolled in exactly 5 of the 100 repetitions;
(b) the mean and variance of the total number of threes rolled.
3. (20 points) The number of cars arriving at the McDonald's drive-up window in a given day is a Poisson random variable, N, with parameter λ. The numbers of passengers in these cars are independent random variables, X_{i}, each equally likely to be one, two, three or four. Find the moment generating function of

$$
S=\sum_{i=1}^{N} X_{i},
$$

the total number of passengers in all the cars.
4. (20 points) Let X_{1}, X_{2}, \ldots be independent random variables, each uniform on the interval $(0,1)$, and let $S_{n}=X_{1}+X_{2}+\ldots X_{n}$.
(a) Find $\lim _{n \rightarrow \infty} P\left(S_{n} \leq t\right)$ for all $t>0$.
(b) Find $\lim _{n \rightarrow \infty} P\left(S_{n} / n \leq t\right)$ for all $t>0$.
(c) Find $\lim _{n \rightarrow \infty} P\left(\left(S_{n}-n / 2\right) / \sqrt{n / 12} \leq t\right)$ for all $t>0$.
(d) Find $\lim _{n \rightarrow \infty} P\left(\prod_{i=1}^{n} X_{i}^{1 / n} \leq t\right)$ for all $t>0$.
(e) Find $\lim _{n \rightarrow \infty} P\left(\max \left(X_{1}, \ldots, X_{n}\right) \leq t\right)$ for all $t>0$.
5. (20 points) Let $\mathbf{x}=\left(\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}, \ldots, \mathbf{x}_{\mathbf{n}}\right)$ be a permutation of the integers 1 to n. Let $\mathbf{y}=\left(\mathbf{y}_{\mathbf{1}}, \mathbf{y}_{\mathbf{2}}, \ldots, \mathbf{y}_{\mathbf{n}}\right)$ be the sequence of relative ranks of the x_{i} 's; i.e., $y_{i}=k$ if x_{i} is the k-th smallest of the first $k x_{i}$'s.
For example, if $n=5$ and $\mathbf{x}=(\mathbf{2}, \mathbf{1}, 4, \mathbf{5}, \mathbf{3})$, then $\mathbf{y}=(\mathbf{1}, \mathbf{1}, \mathbf{3}, \mathbf{4}, \mathbf{3})$.
(a) If $\mathbf{y}=(\mathbf{1}, \mathbf{2}, \mathbf{1}, \mathbf{3}, \mathbf{1})$, what is \mathbf{x} ?
(b) Give a rule to compute \mathbf{x} 's from \mathbf{y} 's.
(c) The result of part (b) shows that, for any fixed n, there is a one-to-one correspondence between the sets of all possible \mathbf{x} 's and all possible \mathbf{y} 's. Now suppose $\mathbf{X}=\left(\mathbf{X}_{\mathbf{1}}, \mathbf{X}_{\mathbf{2}}, \ldots, \mathbf{X}_{\mathbf{n}}\right)$ is a random permutation of the integers 1 to n, and $\mathbf{Y}=\left(\mathbf{Y}_{\mathbf{1}}, \mathbf{Y}_{\mathbf{2}}, \ldots, \mathbf{Y}_{\mathbf{n}}\right)$ are the corresponding relative ranks. Show that the Y_{i} 's are independent, with each Y_{i} uniformly distributed on the integers 1 to i.

