Name \qquad

INSTRUCTIONS

1. Fill in the information requested above.
2. Make sure you have a complete test. There are $\mathbf{7}$ pages (including this cover page) and 6 problems.
3. For problem 1, clearly circle your choice. No partial credit will be given. For problems 2 to 6 , you have to show your work in the space provided to receive partial credit.
4. No books and no notes in this test. Calculators are allowed.
5. This is an $\mathbf{1 2 0}$ minute exam.

Question	Points	Score
1	10	
2	20	
3	15	
4	15	
5	20	
6	20	
Total:	100	

1. (10 points) Which of the following statement is true?
A. The number π can be represented exactly in a finite floating point system (i.e., some finite integer base β and precision t).
B. The explicit midpoint method $Y=y_{i}+\frac{h}{2} f\left(y_{i}\right), y_{i+1}=y_{i}+h f(Y)$ to solve the ODE $y^{\prime}=f(y)$ with $f(y)=\lambda y$ is A-stable.
C. The fixed point iteration $x_{k+1}=\phi\left(x_{k}\right)$ converges quadratically if $\phi^{\prime}\left(x^{*}\right)=0, \phi^{\prime \prime}\left(x^{*}\right) \neq$ 0 , where x^{*} is the fixed point of $\phi(x)$.
D. Evaluating $\sin (x)$ near $x=\pi / 2$ is an ill-conditioned problem.
E. None of the above.
2. (20 points) Suppose $f(x)$ is smooth enough, x^{*} is a root of $f(x)$ with multiplicity $m \geq 2$ (m is an integer), i.e.,

$$
f(x)=\left(x-x^{*}\right)^{m} g(x), \quad g\left(x^{*}\right) \neq 0 .
$$

a) Show that the Newton's method

$$
x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}
$$

converges linearly.
b) Show that the iteration method

$$
x_{k+1}=x_{k}-m \frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}
$$

converges at least quadratically.
3. (15 points) For some function f, you have the following table of extended divided differences

i	x_{i}	$f[\cdot]$	$f[\cdot, \cdot]$	$f[\cdot, \cdot, \cdot]$	$f[\cdot, \cdot, \cdot, \cdot]$
0	5	$f\left[x_{0}\right]$			
1	5	$f\left[x_{1}\right]$	$f\left[x_{0}, x_{1}\right]$		
2	6	4	5	-3	
3	4	2	$f\left[x_{2}, x_{3}\right]$	$f\left[x_{1}, x_{2}, x_{3}\right]$	$f\left[x_{0}, x_{1}, x_{2}, x_{3}\right]$

Using the data in the table, find the polynomial $p_{2}(x)$ of degree at most 2 that satisfies

$$
p_{2}(5)=f(5), \quad p_{2}^{\prime}(5)=f^{\prime}(5), \quad p_{2}(6)=f(6)
$$

4. (15 points) Find the best least squares polynomial approximation of degree 1 to the function $f(x)=e^{-x}$ on the interval $[0,2]$. (Recall that the first two Legendre polynomials defined on the interval $[-1,1]$ are $\phi_{0}(x)=1, \phi_{1}(x)=x$.)
5. (20 points) Determine the abscissae x_{0}, x_{1} and weights a_{0}, a_{1} in the Gaussian quadrature:

$$
\int_{0}^{1} \frac{1}{\sqrt{x}} f(x) \mathrm{d} x \approx a_{0} f\left(x_{0}\right)+a_{1} f\left(x_{1}\right)
$$

6. (20 points) Determine the coefficients a, b, c in the two-step Adams-Moulton formula

$$
y_{i+1}=y_{i}+h\left(a f_{i+1}+b f_{i}+c f_{i-1}\right)
$$

for solving the equation $y^{\prime}=f(y)$, where h is the time step, y_{i} is the approximate solution at t_{i}, and $f_{i}=f\left(y_{i}\right)$. What is the order of this method? Justify your answer.

