MA 514 Numerical Analysis
Qualifying Exam
August 2020

Name \qquad
PUID

INSTRUCTIONS

1. Fill in the information requested above.
2. Make sure you have a complete test. There are $\mathbf{7}$ pages (including this cover page) and 6 problems.
3. You have to show your work in the space provided to receive partial credit.
4. No books and no notes in this test. Calculators are allowed.
5. This is an $\mathbf{1 2 0}$ minute exam.

Question	Points	Score
1	20	
2	20	
3	15	
4	20	
5	10	
6	15	
Total:	100	

1. (20 points) To find the solution \sqrt{a} to the equation $x^{2}-a=0(a>0)$, one has several ways to do the fixed point iteration:

$$
x_{n+1}=\varphi\left(x_{n}\right), \quad n=0,1,2, \ldots,
$$

with

$$
\varphi(x)=\frac{1}{2}\left(x+\frac{a}{x}\right), \quad \varphi(x)=\frac{a}{x}, \quad \varphi(x)=2 x-\frac{a}{x} .
$$

Discuss the convergence (or nonconvergence) behavior for each of the above three iteration functions. In the case of convergence, determine the order of convergence.
2. (20 points) Suppose f is a function on the interval $[0,3]$ for which one knows that

$$
f(0)=1, \quad f(1)=2, \quad f^{\prime}(1)=-1, \quad f(3)=f^{\prime}(3)=0 .
$$

(a) Find a polynomial $p(x)$ of lowest degree that satisfies the above conditions and evaluate $p(2)$.
(b) Estimate the maximum possible error of the answer given in part (a) if one knows, in addition, that $\left|f^{(5)}(x)\right| \leq M$ on $[0,3]$. Express the answer in terms of M.
3. (15 points) Find the best least squares polynomial approximation of degree 2 to the function $f(x)=e^{x}$ on the interval $[0,1]$. (Recall that the first three Legendre polynomials defined on the interval $[-1,1]$ are $\phi_{0}(x)=1, \phi_{1}(x)=x, \phi_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right)$.)
4. (20 points) Determine the abscissae x_{0}, x_{1}, and weights a_{0}, a_{1} in the Gauss quadrature

$$
\int_{0}^{\infty} e^{-x} f(x) \mathrm{d} x \approx a_{0} f\left(x_{0}\right)+a_{1} f\left(x_{1}\right)
$$

5. (10 points) The explicit trapezoidal method to solve the equation $y^{\prime}=f(y)$ reads

$$
\left\{\begin{aligned}
y^{(1)} & =y^{n}+\Delta t f\left(y^{n}\right) \\
y^{n+1} & =y^{n}+\frac{\Delta t}{2}\left(f\left(y^{n}\right)+f\left(y^{(1)}\right)\right)
\end{aligned}\right.
$$

Show that this method is second order accurate.
6. (15 points) Derive the second order backward differentiation formula (BDF) for solving the equation $y^{\prime}=f(y)$ (assume that the uniform time step Δt is used).

