Approximation by ridge functions with weights in a specified set

David Stewart & Palle Jorgensen

University of Iowa Mathematics

September 11, 2018

(ロ) (同) (三) (三) (三) (三) (○) (○)

Extreme Learning Machines

Extreme Learning Machines are neural networks with one hidden layer where the training is only carried out on the weights in the *output*. The weights before the activation/sigmoidal functions are generated randomly are left unchanged.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Approximation by ridge functions

We consider approximating functions $f(\mathbf{x})$ for $\mathbf{x} \in [-1, +1]^m = J^m$ by functions in

$$V_{\mathcal{W}} := \operatorname{span} \left\{ \left. \boldsymbol{x} \mapsto \varphi(\boldsymbol{w}^{\mathsf{T}} \boldsymbol{x}) \mid \varphi \in \mathcal{C}(\mathbb{R}), \; \boldsymbol{w} \in \mathcal{W} \right. \right\}$$

for \mathcal{W} a specific subset in \mathbb{R}^m .

Questions:

- For what sets W is V_W dense in $C(J^m)$?
- If V_W is not dense in C(J^m), how well can we approximate (nice) functions by functions in V_W?

(日) (日) (日) (日) (日) (日) (日)

General framework

We work in a Banach space X; the approximating functions form a subspace $V \subset X$.

If $\overline{V} = X$ then every object in X can be approximated (arbitrarily well) by elements of V.

But if $\overline{V} \neq X$, then for every $\epsilon > 0$ there are functions $0 \neq f \in X$ where $\inf_{g \in V} \|f - g\|_X \ge (1 - \epsilon) \|f\|_X$. So

$$\sup_{f:\|f\|_X=1} \inf_{g\in V} \|f-g\|_X \quad \text{ is either 0 or 1.}$$

Choose a Banach subspace Z compactly embedded in X and we look determine

$$m(V; Z, X) = \sup_{f: ||f||_Z = 1} \inf_{g \in V} ||f - g||_X.$$

In our case we use:

$$\blacktriangleright X = C(J^m)$$

$$\blacktriangleright$$
 $V = V_{W}$

Z = Lip(J^m), the space of Lipschitz functions with semi-norm

$$|f|_{Z} = \sup_{\boldsymbol{x}, \boldsymbol{y} \in J^{m}} \frac{|f(\boldsymbol{x}) - f(\boldsymbol{y})|}{\|\boldsymbol{x} - \boldsymbol{y}\|_{2}}$$

(We can quotient out constant functions since $V_{\mathcal{W}}$ always contains these.)

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

We say $f \in X$ is *unapproximable* by V if

$$\|f\|_X \leq \|f - g\|_X$$
 for all $g \in V$.

For any $f \in X$ if $h \in V$ is the closest point in V to f then f - h is unapproximable by V.

《曰》 《聞》 《臣》 《臣》 三臣 …

The existence of a closest point is assured if X is a reflexive Banach space, but generally false otherwise.

Separating Hyperplane Theorem

Theorem: If $C \subset X$ is closed and convex and $y \notin C$, then there is a $\mu \in X'$ and $b \in \mathbb{R}$ where

$$egin{array}{lll} \langle y,\,\mu
angle+b>0\ \langle z,\,\mu
angle+b\leq 0 & ext{ for all }z\in {m C} \end{array}$$

Specifically, if C is a closed subspace of X, then ν satisfies

$$egin{array}{ll} \langle y,\,\mu
angle> 0 \ \langle z,\,\mu
angle= 0 & ext{ for all }z\in {\cal C}. \end{array}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Cybenko's universal approximation result

George Cybenko's paper from 1989 shows that if (for example) $\sigma(u) = \tanh(u)$ then

$$\overline{\operatorname{span}\left\{\,\boldsymbol{x}\mapsto\sigma(\boldsymbol{w}^{\mathsf{T}}\boldsymbol{x}+\boldsymbol{b})\mid\boldsymbol{w}\in\mathbb{R}^{m},\;\boldsymbol{b}\in\mathbb{R}\,\right\}}=\boldsymbol{C}(J^{m}).$$

The proof uses the Separating Hyperplane Theorem Note: $C(J^m)' = \mathcal{M}(J^m)$, the space of signed Borel measures on J^m with bounded variation and $\langle g, \mu \rangle = \int g(\mathbf{x}) d\mu(\mathbf{x})$. For the μ in the Separating Hyperplane Theorem

$$\int \sigma(oldsymbol{a}oldsymbol{w}^{\mathsf{T}}oldsymbol{x}+oldsymbol{b})\,oldsymbol{d}\mu(oldsymbol{x})=0\qquad ext{for all }oldsymbol{a},oldsymbol{b}\in\mathbb{R}$$

so we can show that

$$0 = \mu^{\boldsymbol{w}}(\boldsymbol{F}) := \mu\left(\left\{\,\boldsymbol{x} \mid \boldsymbol{w}^{\mathsf{T}}\boldsymbol{x} \in \boldsymbol{F}\,\right\}\right) \qquad \text{for all Borel } \boldsymbol{F} \subset \mathbb{R}.$$

Fourier Transforms

A Borel measure μ with bounded variation has a Fourier Transform

$$\widehat{\mu}(\boldsymbol{\xi}) = \int_{\mathbb{R}^m} e^{-i \boldsymbol{\xi}^{\mathsf{T}} \boldsymbol{x}} \, d\mu(\boldsymbol{x}).$$

Note that for the μ from the SHT

$$egin{aligned} \widehat{\mu}(m{s}m{w}) &= \int_{\mathbb{R}^m} e^{-im{s}m{w}^Tm{x}} \, d\mu(m{x}) \ &= \int_{\mathbb{R}} e^{-im{s}t} \, d\mu^{m{w}}(t) = \widehat{\mu^{m{w}}}(m{s}) = 0. \end{aligned}$$

For Cybenko's result, this is true for all $\boldsymbol{w} \in \mathbb{R}^m$ so $\hat{\mu}(\boldsymbol{\xi}) = 0$ for all $\boldsymbol{\xi}$, and so $\mu = 0$ contradicting the SHT.

Thus there is no *f* in $C(J^m)$ that is not in

span {
$$\boldsymbol{x} \mapsto \sigma(\boldsymbol{w}^T \boldsymbol{x} + \boldsymbol{b}) \mid \boldsymbol{w} \in \mathbb{R}^m, \ \boldsymbol{b} \in \mathbb{R}$$
 }

What about specific (finite) \mathcal{W} ?

What about spans of ridge functions

$$V_{\mathcal{W}} := \operatorname{span} \left\{ \left. oldsymbol{x} \mapsto arphi(oldsymbol{w}^{\mathsf{T}}oldsymbol{x}) \mid arphi \in \mathcal{C}(\mathbb{R}), \ oldsymbol{w} \in \mathcal{W}
ight\}
ight\}$$
?

We can get *lower bounds* on how badly a Lipschitz function *f* can be approximated by $V_{\mathcal{W}}$ as follows: Pick a measure μ with support in J^m where $\mu^{w} = 0$ for every $w \in \mathcal{W}$. Then look for a function *f* where $\langle f, \mu \rangle = \|f\|_{\infty} \|\mu\|_{\mathcal{M}} \neq 0$.

(日) (日) (日) (日) (日) (日) (日)

The measure μ has to satisfy $\hat{\mu}(t\mathbf{w}) = 0$ for all $t \in \mathbb{R}$ and $\mathbf{w} \in \mathcal{W}$.

Example: $W = \{e_1, e_2\}.$

The Fourier transform $\widehat{\mu}(t\boldsymbol{e}_1) = \widehat{\mu}(t\boldsymbol{e}_2) = 0$ for all $t \in \mathbb{R}$.

Since the Fourier transform of $\delta_{\mathbf{v}} = \delta(\cdot - \mathbf{v})$ is $\widehat{\delta_{\mathbf{v}}}(\boldsymbol{\xi}) = \exp(-i\boldsymbol{\xi}^T \mathbf{v})$, so we look for $\widehat{\mu}(\boldsymbol{\xi})$ that involves complex exponentials $\exp(-i\boldsymbol{\xi}^T \mathbf{v})$ for $\mathbf{v} \in J^m$.

Note: $\hat{\mu}(\boldsymbol{\xi})$ is complex analytic everywhere (entire) so we can look for Taylor series. So...

$$\widehat{\mu}(\boldsymbol{\xi}) = \boldsymbol{c}\,\xi_1\,\xi_2 + \cdots$$

We can put $\hat{\mu}(\boldsymbol{\xi}) = (e^{-i\xi_1} - e^{+i\xi_1}) (e^{-i\xi_2} - e^{+i\xi_2}), (c = (-2i)^2).$ Here μ is a sum of δ -functions at (x_1, x_2) with each $x_i = \pm 1$, and the weights at each of these points is $x_1 x_2$.

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Now we need to find a function *f* with, say, $||f||_{\infty} = 1$ and $\langle f, \mu \rangle = ||f||_{\infty} ||\mu||_{\mathcal{M}}$.

Since μ is a sum of (scaled) δ -functions, we can choose $f(\mathbf{v}) = \pm 1$ at each of these points, choosing the sign of $f(\mathbf{v})$ to match the sign of the scaling of the associated δ -function.

We can put $f(x_1, x_2) = x_1 x_2$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Note that this *f* is Lipschitz with Lipschitz constant $\sqrt{2}$.

In general: if $A = \text{supp } \mu_+$ and $B = \text{supp } \mu_-$ we have a Lipschitz function f where $f(\mathbf{x}) = +1$ for $\mathbf{x} \in \text{supp } \mu_+$ and $f(\mathbf{x}) = -1$ for $\mathbf{x} \in \text{supp } \mu_-$:

$$f(\mathbf{x}) = \frac{d(\mathbf{x}, B) - d(\mathbf{x}, A)}{d(\mathbf{x}, B) + d(\mathbf{x}, A)}$$

Lip $f = \frac{2}{\min_{\mathbf{a} \in A, \mathbf{b} \in B} \|\mathbf{a} - \mathbf{b}\|}$

Non-trivial lower bounds

What if there are many vectors in \mathcal{W} ? How many do we need to get a reasonable approximation? Choose

$$\boldsymbol{z}_{k+1} \perp \left\{ \boldsymbol{z}_1, \ldots, \boldsymbol{z}_k, \boldsymbol{w}_{s(k)}, \ldots, \boldsymbol{w}_{s(k+1)-1} \right\}$$

where s(k + 1) = s(k) + m - 1 - k for k = 1, 2, ..., m - 2. Put

$$\widehat{\mu}(\boldsymbol{\xi}) = \boldsymbol{c} \prod_{k=1}^{m-1} \left(\exp(-i\boldsymbol{z}_{k}^{T}\boldsymbol{\xi}) - \exp(+i\boldsymbol{z}_{k}^{T}\boldsymbol{\xi}) \right) \qquad \text{so}$$
$$\mu = \boldsymbol{c} \sum_{\boldsymbol{u} \in \{\pm 1\}^{m-1}} \left(\prod_{k=1}^{m-1} u_{k} \right) \delta_{\sum_{k=1}^{m-1} u_{k} \boldsymbol{z}_{k}}.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Choose
$$\|\boldsymbol{z}_k\|_2 = 1/\sqrt{m-1}$$
 so that $\|\sum_k u_k \boldsymbol{z}_k\|_{\infty} \le 1$ for all $\boldsymbol{u} \in \{\pm 1\}^{m-1}$.

$$\sup \mu_{+} = \left\{ \sum_{k} u_{k} \mathbf{z}_{k} \mid \mathbf{u} \in \{\pm 1\}^{m-1} \& \# \{k \mid u_{k} > 0\} \text{ is even} \right\}$$
$$\sup \mu_{-} = \left\{ \sum_{k} u_{k} \mathbf{z}_{k} \mid \mathbf{u} \in \{\pm 1\}^{m-1} \& \# \{k \mid u_{k} > 0\} \text{ is odd} \right\}$$

Thus given \mathcal{W} with $|\mathcal{W}| \leq \frac{1}{2}m(m-1)$ there is a function f of Lipschitz constant $\sqrt{m-1}$ with $||f||_{\infty} = 1$ that is unapproximable by span $\{\mathbf{x} \mapsto \varphi(\mathbf{w}^T \mathbf{x}) \mid \varphi \in C(\mathbb{R}), \mathbf{w} \in \mathcal{W}\}$.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで